OPTIMIZATION OF TEST METHODS AND ALGORITHMS FOR ASSESSING THE RESISTANCE OF FIELD-EFFECT TRANSISTORS TO VARIOUS TYPES OF RADIATION USING PROMISING TEST EQUIPMENT
Abstract and keywords
Abstract (English):
Field-effect transistors are subject to various effects when exposed to ionizing radiation. These effects are associated with both ionization of semiconductor layers – channel and substrate regions, drain and source pockets, and dielectric ones. Obtaining a sufficient set of data on sensitivity to these effects is an extensive task in terms of time and labor costs due to the performance of installations reproducing the spectral characteristics of various types of radiation expo-sure, which makes it urgent to optimize test procedures, including using various (including simulating) installations. This paper provides an overview of the features of the prep-aration and conduct of tests for resistance to single radiation effects using a high-performance laser installation, as well as a comparative analysis of experimental procedures and re-sults with those obtained using a TKP accelerator. It is shown that the results of determining the resistance of field-effect transistors to the manifestation of the SEB effect, ob-tained using a high-frequency accelerator and a focused LIE installation, have sufficient convergence in terms of satura-tion cross-section values. Based on the results of the field-effect transistor tests and the analysis carried out, it is con-cluded that the use of laser test facilities has a number of significant advantages that allow optimizing test procedures

Keywords:
Field effect resistance, radiation exposure, test methods, SEB effect, transistor responses
References

1. Chumakov A.I. i dr. Radiacionnaya stoykost' izdeliy EKB: Nauchnoe izdanie. ¬– M.: NIYaU MIFI, 2015 – 512 s.

2. Tapero K.I., Ulimov V.N., Chlenov A.M. Radiacionnye effekty v kremnievyh integral'nyh shemah kosmicheskogo primeneniya. – M.: Binom, 2012 – 306 s.

3. Duzellier S. Radiation effects on electronic devices in space // Aerospace science and technology. – 2005. – T. 9. – №. 1. – S. 93–99.

4. Chumakov A.I. Vozmozhnosti i ogranicheniya lazernyh metodov pri ocenke parametrov chuvstvitel'nosti BIS k effektam vozdeystviya tyazhelyh zaryazhennyh chastic // Bezopasnost' informacionnyh tehnologiy. – 2019. – T. 26. – №. 3. – S. 58–67.

5. Melinger J. S. et al. Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies //IEEE Transactions on Nuclear Science. – 1994. – T. 41. – №. 6. – S. 2574–2584.

6. Vaid R., Padha N. Comparative study of power MOSFET device structures. – 2005.

7. Sharapov A.A., Vatuev A.S., Emel'yanov V.V., Shorygina A.D., Kozlov A.A., Osobennosti primeneniya istochnikov sfokusirovannogo lazernogo izlucheniya dlya issledovaniya SEB effekta v polevyh HEXFET tranzistorah // Tezisy dokladov 26-y Vserossiyskoy nauchno-tehnicheskoy konferencii «Radiacionnaya stoykost' elektronnyh sistem» – «Stoykost'-2023» – 2023. – S. 108-109.

8. Jellison Jr G. E., Modine F. A. Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures // Applied Physics Letters. – 1982. – T. 41. – №. 2. – S. 180–182.

9. Gadoev S.M., Skorobogatov P.K. Vliyanie temperatury i urovnya legirovaniya na parametry lazernogo imitacionnogo modelirovaniya ionizacionnyh effektov v kremnievyh IS // Mikroelektronika. – 2005. – T. 34. – №. 6. – S. 451–454.

10. Spitzer W., Fan H. Y. Infrared absorption in n-type silicon // Physical Review. – 1957. – T. 108. – №. 2. – S. 268.

11. Hara H., Nishi Y. Free carrier absorption in p-type silicon // Journal of the Physical Society of Japan. – 1966. – T. 21. – №. 6. – S. 1222–1222.

12. RD 134-0175-2009 Metody ispytaniy cifrovyh sverhbol'shih integral'nyh mikroshem na vozdeystvie odinochnyh vysokoenergeticheskih protonov i tyazhelyh zaryazhennyh chastic kosmicheskogo prostranstva na uskoritelyah zaryazhennyh chastic. – M.: AO «NII KP», 2004.

13. GOST R. 16269-6–2005 Statisticheskie metody. Statisticheskoe predstavlenie dannyh. Opredelenie statisticheskih tolerantnyh intervalov. – M.: Standartinform, 2005. – 27 s.

14. RD V 319.03.38–2000. Izdeliya elektronnoy tehniki. Mikroshemy integral'nye. Metody vzaimnogo perescheta parametrov modeley odinochnyh sboev bol'shih i sverhbol'shih integral'nyh shem pri vozdeystvii otdel'nyh vysokoenergetichnyh zaryazhennyh chastic galakticheskih i solnechnyh kosmicheskih luchey i protonov kosmicheskogo prostranstva. – M.: 22 CNIII MO RF, 2000.

15. Zebrev G. I. et al. Proton-and Neutron-Induced SEU Cross-Section Modeling andSimulation: A Unified Analytical Approach // Radiation. – 2024. – T. 4. – №. 1. – S. 37-49. – DOIhttps://doi.org/10.3390/radiation4010004.

16. Hales J. M. et al. A simplified approach for predicting pulsed-laser-induced carrier generation in semiconductor // IEEE Transactions on Nuclear Science. – 2017. – T. 64. – №. 3. – S. 1006–1013.

17. Hales J. M. et al. Experimental validation of an equivalent LET approach for correlating heavy-ion and laser-induced charge deposition // IEEE Transactions on Nuclear Science. – 2018. – T. 65. – №. 8. – S. 1724–1733.

18. Nashiyama I. et al. Study of basic mechanisms of single event upset using high-energy microbeams // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 1991. – T. 54. – №. 1-3. – S. 407–410.

19. Buchner S. P. et al. Pulsed-laser testing for single-event effects investigations // IEEE Transactions on Nuclear Science. – 2013. – T. 60. – №. 3. – S. 1852–1875.

20. Fouillat P. et al. Fundamentals of the pulsed laser technique for single-event upset testing // Radiation Effects on Embedded Systems. – 2007. – S. 121–141.

Login or Create
* Forgot password?