Moscow, Russian Federation
The geometric interpretation of quaternions is considered. The visualization complexity of quaternions is due to the fact that these objects have four independent parameters. A literature analysis shows that the problem of geometric interpretation of quaternions has not been completely solved to date. The first section provides general provisions on quaternions and the necessary notations. The second section describes the classical geometric interpretation of quaternions by arcs on a unit sphere. The third section describes a new geometric interpretation and its application to the problem of a vector finite rotation. The geometric interpretation of the quaternion as the surface of a right circular cone is presented. This representation allow demonstrating it as a holistic object in which the scalar and vector parts are interconnected, taking into account their modules and signs. For the considered normalized quaternion, it is easy to understanding an important entity, the quaternion versor: in general, it is a cone, which in the limiting case of a pure scalar quaternion transform into a sphere, and in the limiting case of a pure vector quaternion transform into an ordinary vector. This distinctive feature of the proposed geometric interpretation makes it possible, even when projected onto a plane, to clearly distinguish visualization of the quaternions with a nonzero scalar part from pure vector quaternions, which is difficult to do in the other known interpretations. The representation of quaternions by cones clearly demonstrates the need for a double quaternion product, when the vector is rotated around an arbitrary axis. Images of quaternions as cones, spheres and vectors can be useful in the study of quaternion algebra, which is currently finding increasing use in engineering.
geometry, quaternions, geometric interpretation, product of quaternions, education
1. Alexandrova N.V. Iz istorii vektornogo ischisleniya [From the history of vector calculus]. Moscow, URSS Publ., 2022. 272 p. (in Russian)
2. Arnold V.I. Geometriya kompleksnyh chisel, kvaternionov i spinov [Geometry of complex numbers, quaternions and spins]. Moscow, MZNMO Publ., 2013. 40 p. (in Russian)
3. Bezmenov V.M. Application of quaternions in photogrammetry. Izvestiya vysshih uchebnyh zavedenij. Geodeziya i aerofotos’emka. [News of higher educational institutions. Geodesy and aerial photography]. 2014, I. 5, pp. 22-27. (in Russian)
4. Bojkov A.A. About building of models for objects in space of four and more dimensions in educational process. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 4, pp. 54-71. DOI: 0.12737/article_5c21f96dce5de8.36096061. (in Russian)
5. Branets V.N. Zapiski inzhenera [Engineer's notes]. Moscow, «RTSoft»-«Kosmoskop» Publ., 2018. 592 p. (in Russian)
6. Branets V.N., Shmyglevsky I.P. Primenenie kvaternionov v zadachah orientacii tverdogo tela [Application of quaternions in rigid body orientation problems]. Moscow, Nauka Publ., 1973. 320 p. (in Russian)
7. Voloshinov D.V. Algorithmic complex for solving of problems with quadrics using imaginary geometric images. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 2, pp. 3-32. DOI:https://doi.org/10.12737/2308-4898-2020-3-32. (in Russian)
8. Golubev Yu.F. The algebra of quaternions in the kinematics of a solid. Preprinty IPM im. M.V. Keldysha [Preprints of the IPM named after M.V. Keldysh], 2013, I. 39, 23 p. (in Russian)
9. Gordeev V.N. Kvaterniony i bikvaterniony s prilozheniyami v geometrii i mekhanike [Quaternions and biquaternions with applications in geometry and mechanics]. Kiev, Stal’ Publ., 2016. 316 p. (in Russian)
10. Dimentberg F.M. Teoriya vintov i ee prilozheniya [Screw theory and its applications]. Moscow, Nauka Publ., 1978. 328 p. (in Russian)
11. Ignat'ev S.A., Muratbakeev E.H., Voronina M.V. Increasing the visibility of representation for objects studying in descriptive geometry. Geometriya i grafika [Geometry and Graphics]. 2022, V. 10, I. 10, pp. 44-53. DOI:https://doi.org/10.12737/2308-4898-2022-10-1-44-53. (in Russian)
12. Kantor I.L., Solodovnikov A.S. Giperkompleksnye chisla [Hypercomplex numbers]. Moscow, Nauka Publ., 1973. 144 p. (in Russian)
13. Conway J.H., Smith D. On Quaternions and Octonions. CRC Press, 2003. 159 p. (Russ. ed.: Conway J.H., Smith D. About quaternions and octaves, about their geometry, arithmetic and symmetries. Moscow, MZNMO Publ., 2009. 183 p.). (in Russian)
14. Korotkij V.A. Geometric modeling of a surface by mapping it to a four-dimensional space. Omskij nauchnyj vestnik [Omsk Scientific Bulletin]. 2015, I. 137, pp. 8-12. (in Russian)
15. Levkin Yu.S. Six-measured epure nomogram in four oktant measurement. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 39-47. DOI:https://doi.org/10.12737/article_5ad098b05f1559.36303938. (in Russian)
16. Lyashkov A.A., Panchuk K.L., Varepo L.G. Four-dimensional space’s hypersurface mapping singularity. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 3-10. DOI:https://doi.org/10.12737/article_59bfa3078af4c1.45321238. (in Russian)
17. Misyura N.E. Mityushov E.A. Kvaternionnye modeli v kinematike i dinamike tverdogo tela [Quaternion models in kinematics and dynamics of a rigid body]. Ekaterinurg, Ural University Publ., 2020. 120 p. (in Russian)
18. Nazarova O.N. Analysis of some problems from a course on theoretical mechanics solved by descriptive geometry’s methods. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 4, pp. 76-83. DOI:https://doi.org/10.12737/2308-4898-2020-76-83. (in Russian)
19. Poljakova N.S., Derjabina G.S. Kvaterniony i ih primenenie : metodicheskie ukazaniya [Quaternions and their application: guidelines]. Moscow, BMSTU Publ., 2003. 54 p. (in Russian)
20. Savel'ev Yu.A., Cherkasova E.Yu. Computational graphics in solving of non-traditional engineering problems. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 1, pp. 33-44.DOI:https://doi.org/10.12737/2308-4898-2020-33-44. (in Russian)
21. Sadberri E. Quaternion analysis. Giperkompleksnye chisla v geometrii i fizike [Hypercomplex numbers in geometry and physics], 2004, V. 1, I. 2-2, pp. 130-157. (in Russian)
22. Seregin V.I., Ivanov G.S., Dmitrieva I.M., Murav'ev K.A. Interdisciplinary connections of descriptive geometry and related sections of higher mathematics. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 3-4, pp. 8-12. (in Russian)
23. Chelnokov Yu.N. Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ih prilozheniya. Geometriya i kinematika dvizheniya [Quaternionic and biquaternionic models and methods of solid mechanics and their applications. Geometry and kinematics of motion]. Moscow, FIZMATLIT Publ., 2006. 512 p. (in Russian)
24. Baek J., Jean H., Kim G., Han S. Visualizing quaternion multiplication. IEEE Access, 2017. V. 5, pp. 8948-8955. DOI:https://doi.org/10.1109/ACCESS.2017.2705196.
25. Bolker E.D. The Spinor Spanner. The American Mathematical Monthly. 1973, V. 80, I. 9, pp. 977-984. DOIhttps://doi.org/10.2307/2318771.
26. Boykov A.A. Development and application of the geometry constructions language to building computer geometric models. Journal of Physics: Conference Series, 2021, I. 1901, PaperID 012058, 9 p. DOI:https://doi.org/10.1088/1742-6596/1901/1/012058.
27. Demirci B.B., Aghayev N. On geometric applications of quaternions. Turkish Journal of Mathematics, 2020, V. 44. I. 4, Article 15, 16 p. DOIhttps://doi.org/10.3906/mat-1907-120.
28. Goldman R. An Integrated Introduction to Computer Graphics and Geometric Modeling. CRC Press, 2009, 574 p.
29. Goldman R. Understanding quaternions. Graph. Models, 2011, V. 73, I. 2, pp. 21-49. DOIhttps://doi.org/10.1016/j.gmod.2010.10.004.
30. Hamilton W.R. Elements of quaternions. London, Longmans Green, 1866, 762 p.
31. Hanson, A.J. Visualizing Quaternions. Elsevier: Morgan Kaufmann, 2006, 536 p.
32. Hart J.C., Francis G.K., Kauffman L.H. Visualizing quaternion rotation. ACM Trans. Graph., 1994, V. 13, I. 3, pp. 256-276. DOIhttps://doi.org/10.1145/195784.197480.
33. Hitzer E. The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations. Journal of Physics: Conference Series, 2015, I. 597, PaperID 012042, 11 p. DOIhttps://doi.org/10.1088/1742-6596/597/1/012042.
34. Kuipers J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press, 2002, 400 p.
35. Malonek H.R. Quaternions in Applied Sciences. Bauhaus-Universität Weimar. Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 16. 2003, 20 p. Available at: https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-136 (accessed 04 August 2022)
36. Meister L., SchaebenH. A concise quaternion geometry of rotations. Math. Meth. Appl. Sci., 2005, V. 28, pp. 101-126. DOI:https://doi.org/10.1002/mma.560.
37. Minguzzi E. A geometrical introduction to screw theory. Eur. J. Phys., 2013, V. 34, pp. 613-632. DOIhttps://doi.org/10.1088/0143-0807/34/3/613.
38. Peng Du, Haibao Hu, Dong Ding, Zhuoyue Li Understanding quaternions. NOVA Publ. 2020, 197 p.
39. Staley M. Understanding quaternions and the Dirac belt trick. Eur. J. Phys. 2010, V. 31, pp. 467-478. DOIhttps://doi.org/10.1088/0143-0807/31/3/004.
40. Tait P.G. An Elementary Treatise on Quaternions. Clarendon Press, 1867, 320 p.