MODELING ELLIPSOIDS USING NANOCAD AS PART OF THE EDUCATIONAL PROCESS
Abstract and keywords
Abstract (English):
The article considers the methods of geometric modeling by means of NanoCAD of the following surfaces of the second order: a sphere, an ellipsoid of revolution and a triaxial ellipsoid, parts of which were widely used in classical architecture and continue to be used as prototypes of domed and large-span roofs in modern architecture, which determines the relevance of this work. On the other hand, ellipsoids, as well as spheres, are the simplest surfaces of the second order for modeling and are relatively easy to implement in various CAD systems, including domestic ones SOMPAS-3D and NanoCAD. Depending on the degree of symmetry of the surface, various options for its construction can be used. In particular, a triaxial ellipsoid can be constructed in at least three ways: using programming in the built-in nanoLisp or VBA languages; using blocks with subsequent stretching/compression along the selected directions; using the operation of "pulling by sections", having previously constructed these sections. In case of constructing an ellipsoid of revolution, it is possible to additionally add the operation of rotating a half arc of the ellipse relative to its diameter (there are two options for rotation - relative to the major axis or relative to the minor axis of the generating ellipse). The sphere can be created by any of the above methods, and, in addition, it is possible to use built-in primitives. The article analyzes the advantages and disadvantages of the algorithms of each of the three main methods for constructing a triaxial ellipsoid, as the least symmetrical of the three surfaces under consideration. The labor intensity, the quality of the obtained result and the required degree of user training for choosing one or another option for surface modeling are analyzed. Algorithms for constructing surfaces are also given, accompanied by illustrations of the resulting intermediate and final results. In conclusion, conclusions are made on the degree of appropriateness of using one or another method of construction in the educational process.

Keywords:
sphere, ellipsoid of revolution, triaxial ellipsoid, geometric modeling, surface modeling technology, modeling algorithm
References

1. Boykov A.A. K voprosu o metodike ispol'zovaniya algoritmov pri reshenii zadach nachertatel'noy geometrii [Tekst] / A.A. Boykov, A.A. Sidorov, A.M. Fedotov // Geometriya i grafika. — 2018. — T. 6. — № 3. — S. 56–68. — DOI:https://doi.org/10.12737/article_5bc45add9a2b21.45929543 EDN: https://elibrary.ru/YNAWMP

2. Borovikov I.F. O primenenii preobrazovaniy pri reshenii zadach nachertatel'noy geometrii [Tekst] / I.F. Borovikov, G.S. Ivanov, N.G. Surkova // Geometriya i grafika. — 2018. — T. 6. — № 2. — S. 78–84. DOI:https://doi.org/10.12737/article_5b55a35d683a33.30813949 EDN: https://elibrary.ru/UWFDQS

3. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschie ot dvuh zadannyh geometricheskih figur. Chast' 2: Geometricheskie mesta tochek, ravnoudalennye ot tochki i konicheskoy poverhnosti [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, O.L. Dallakyan // Geometriya i grafika. — 2017. — T. 5. — № 4. — S. 15–23. DOI:https://doi.org/10.12737/article_5a17f9503d6f40.18070994 EDN: https://elibrary.ru/ZWSRLL

4. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschie ot dvuh zadannyh geometricheskih figur. Chast' 4: Geometricheskie mesta tochek, ravnoudalennye ot dvuh sfer [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, D.S. Peh // Geometriya i grafika. — 2021. T. 9. — № 3. — S. 12–29. — DOI:https://doi.org/10.12737/2308-48982021-9-3-12-29 DOI: https://doi.org/10.12737/2308-4898-2021-9-3-12-29; EDN: https://elibrary.ru/WGHOZY

5. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschie ot dvuh zadannyh geometricheskih figur. Chast' 5: Geometricheskie mesta tochek, ravnoudalennye ot sfery i ploskosti [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, K.T. Egiazaryan // Geometriya i grafika. — 2021. — T. 9. — № 4. — S. 22–34. — DOI: DOI: https://doi.org/10.12737/2308-4898-2022-9-4-22-34; EDN: https://elibrary.ru/MGDBLH

6. E Vin Tun. Postroenie receptornyh geometricheskih modeley ob'ektov slozhnyh tehnicheskih form [Tekst] / E Vin Tun, L.V. Markin // Geometriya i grafika. 2019. — T. 7. — № 4. — S. 44–56. — DOI:https://doi.org/10.12737/23084898-2020-44-56 DOI: https://doi.org/10.12737/2308-4898-2020-44-56; EDN: https://elibrary.ru/KMHWCL

7. Ivanov V.N. Osnovy razrabotki i vizualizacii ob'ektov analiticheskih poverhnostey i perspektivy ih ispol'zovaniya v arhitekture i stroitel'stve [Tekst] / V.N. Ivanov, S.N. Krivoshapko, V.A. Romanova // Geometriya i grafika. — 2017. — T. 5. — № 4. — S. 3–14. DOI:https://doi.org/10.12737/article_5a17f590be3f51.37534061 EDN: https://elibrary.ru/ZWSRLB

8. Ivaschenko A.V. Obschiy analiz formy linii peresecheniya dvuh odnotipnyh poverhnostey vtorogo poryadka [Tekst] / A.V. Ivaschenko, D.A. Vavanov // Geometriya i grafika. — 2020. — T. 8. — № 4. — S. 24–34. DOI: https://doi.org/10.12737/2308-4898-2021-8-4-24-34; EDN: https://elibrary.ru/WBYURV

9. Ivaschenko A.V. Modelirovanie poverhnosti cilindroida sredstvami CAD-sistem [Tekst] / A.V. Ivaschenko, A.V. Stepura // Perspektivy nauki. — 2023. № 1. — S. 121–124. EDN: https://elibrary.ru/MHRRUD

10. Korotkiy V.A. Graficheskie algoritmy postroeniya kvadriki, zadannoy devyat'yu tochkami [Tekst] / V.A. Korotkiy // Geometriya i grafika. — 2019. — T. 7. — № 2. — S. 3–12. — DOI:https://doi.org/10.12737/article_5d2c1502670779. 58031440 DOI: https://doi.org/10.12737/article_5d2c1502670779.58031440; EDN: https://elibrary.ru/GNMMTR

11. Korotkiy V.A. Krivye vtorogo poryadka na ekrane komp'yutera [Tekst] / V.A. Korotkiy, E.A. Usmanova // Geometriya i grafika. — 2018. — T. 6. — № 2. — S.101-113. DOI:https://doi.org/10.12737/article_5b55a829cee6c0.74112002 EDN: https://elibrary.ru/XVRAMP

12. Krivoshapko S.N. Enciklopediya analiticheskih poverhnostey [Tekst] / S.N. Krivoshapko, V.N. Ivanov. M.: LIBROKOM, 2019. — 560 s.

13. Kuvshinov N.S. NanoCAD. Mehanika [Tekst] / N.S. Kuvshinov — M.: DMK Press, 2020. — 528 s.

14. Nazarova Zh.A. Geometro-graficheskaya podgotovka studentov tehnicheskih special'nostey v sovremennyh usloviyah [Tekst] / Zh.A. Nazarova // Geometriya i grafika. — 2024. — T. 12. — № 1. — S. 41–49. DOIhttps://doi.org/10.12737/2308-4898-2024-12-1-41-49 EDN: https://elibrary.ru/EULJRU

15. Norden A.P. Teoriya poverhnostey [Tekst] / A.P. Norden. — M.: LENAND, 2019. — 264 c.

16. Rozendorn E.R. Teoriya poverhnostey [Tekst] / E.R. Rozendorn. — M.: FIZMATLIT, 2006. — 304 s. EDN: https://elibrary.ru/UGLNRH

17. Rustamyan V.V. Sinteticheskoe predstavlenie preobrazovaniya «kosaya simmetriya» na primere preobrazovaniya ellipsa [Tekst] / V.V. Rustamyan, E.V. Bayanov, R.B. Slavin // Geometriya i grafika. — 2023. — T. 11. № 3. — S. 12–18. — DOI:https://doi.org/10.12737/2308-4898-2023-113-12-18 DOI: https://doi.org/10.12737/2308-4898-2023-11-3-12-18; EDN: https://elibrary.ru/TMICTM

18. Savel'ev Yu.A. Komp'yuternaya metodika izucheniya nachertatel'noy geometrii. Tehnicheskoe zadanie [Tekst] / Yu.A. Savel'ev, E.V. Babich // Geometriya i grafika. 2018. — T. 6. — № 1. — S. 67–74. — DOI:https://doi.org/10.12737/article_5ad09d62e8a792.47611365. EDN: https://elibrary.ru/YWMSER

19. Sal'kov N.A. Izuchenie geometrii kak vazhneyshiy sposob razvitiya evristicheskogo myshleniya [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. № 1. — S. 22–31. — DOI:https://doi.org/10.12737/2308-4898-2024-121-22-31 DOI: https://doi.org/10.12737/2308-4898-2024-12-1-22-31; EDN: https://elibrary.ru/RDLBIM

20. Sal'kov N.A. Nachertatel'naya geometriya — bazis tehnicheskogo obrazovaniya [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2023. — T. 11. — № 3. — S. 47–72. DOI:https://doi.org/10.12737/2308-4898-2023-11-3-47-72 EDN: https://elibrary.ru/ZCUCQN

21. Sal'kov N.A. Nachertatel'naya geometriya. Konstruirovanie poverhnostey [Tekst] / N. A. Sal'kov — M.: INFRA-M, 2022. — 220 c.

22. Sal'kov N. A. Rasshirenie variantov formirovaniya lineychatyh poverhnostey [Tekst] / N. A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. — № 1. — S. 3–11. DOI:https://doi.org/10.12737/2308-4898-2024-12-1-3-11 EDN: https://elibrary.ru/IRNBEQ

23. Sal'kov N.A. Formirovanie poverhnostey pri kineticheskom otobrazhenii [Tekst] / N.A.Sal'kov // Geometriya i grafika. — 2018. — T. 6. — № 1. — S. 20–33. DOI:https://doi.org/10.12737/article_5ad094a0380725.32164760 EDN: https://elibrary.ru/YWMSCP

24. Sinicyn S.A. Parketirovanie poverhnosti parabolicheskogo koncentratora solnechnogo teplofotoelektricheskogo modulya po zadannym differencial'no-geometricheskim trebovaniyam [Tekst] / S.A. Sinicyn, D.S. Strebkov, V.A. Panchenko // Geometriya i grafika. — 2019. — T. 7. — № 3. — S. 15–27. — DOI: 10.12737/ article_5dce6084f1ac94.09740392 DOI: https://doi.org/10.12737/article_5dce6084f1ac94.09740392; EDN: https://elibrary.ru/RVZTVG

25. Skiena S. Algoritmy. Rukovodstvo po razrabotke [Tekst] / S. Skiena; per. s angl. — SPb.: BHV-Peterburg, 2021. — 720s.

26. Strashnov S.V. Velaroidal'nye obolochki i obolochki velaroidal'nogo tipa [Tekst] / S.V. Strashnov // Geometriya i grafika. — 2022. — T. 10. — № 2. — S. 11–19. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-11-19 EDN: https://elibrary.ru/AICWIR

27. Strashnov S.V. K voprosu o klassifikacii analiticheskih poverhnostey [Tekst] / S.V. Strashnov, M.I. Rynkovskaya // Geometriya i grafika. — 2022. T. 10. — № 1. — S. 36–43. — DOI:https://doi.org/10.12737/2308-48982022-10-1-36-43 DOI: https://doi.org/10.12737/2308-4898-2022-10-1-36-43; EDN: https://elibrary.ru/YPILOJ

28. Strashnov S.V. Komp'yuternoe modelirovanie novyh form stroitel'nyh obolochek [Tekst] / S.V. Strashnov // Geometriya i grafika. — 2022. — T. 10. — № 4. — S. 26–34. — DOI:https://doi.org/10.12737/2308-4898-2022-10-4-26-34. EDN: https://elibrary.ru/PXTLAU

29. Finikov S.P. Teoriya poverhnostey [Tekst] / S.P. Finikov. — M.: KomKniga, 2013. — 208 s.

30. Chetveruhin N.F. Metody geometricheskih postroeniy [Tekst] / N.F. Chetveruhin. — M.: LENAND, 2018. 152 s.

Login or Create
* Forgot password?