Russian Federation
Geometric models and algorithms for generating fractal images as hyper-fractal sections by a plane of general position placed in a four-dimensional space of real and imaginary components of complex variables are presented. To visualize the hyper-fractal and control the position of the cutting plane, it is proposed to use a hyper-drawing, the cutting plane is considered attached to an active three-dimensional object – a «shuttle», which is controlled by shifts and elementary rotations around the base planes. To implement the proposed algorithms, the Python language is used in the environment of a three-dimensional editor for design – «Blender-3D»
hyper-fractal, Julia set, Mandelbrot set, hyper-drawing, multidimensional geometry, 4D space, Blender-3D
1. Belyaeva E.A., Borisova O.N., Mityushkina O.A. Fraktal'nye podhody k teziograficheskim issledovaniyam (kratkiy obzor literatury) // Vestnik novyh medicinskih tehnologiy. Elektronnyy zhurnal. 2015. №. 2. DOI:https://doi.org/10.12737/11946 (data obrascheniya: 22.10.2024).
2. Zhiharev L.A. Primenenie krivoy Koha dlya povysheniya prochnosti detaley samoletov // Geometriya i grafika. 2022. №. 4. S. 13–25. DOI:https://doi.org/10.12737/2308-4898-2022-10-4-13-25 (data obrascheniya: 22.10.2024).
3. Zhiharev L.A. Obzor geometricheskih sposobov povysheniya udel'noy prochnosti konstrukciy: topologicheskaya optimizaciya i fraktal'nye struktury // Geometriya i grafika. 2022. №. 4. S. 46–62. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-46-62
4. Brylkin Yu.V. Modelirovanie mikro- i nanostruktury poverhnosti dlya resheniya zadach gazovoy dinamiki i teplomassoobmena // Geometriya i grafika. 2018. №. 2. S. 94–99. DOI:https://doi.org/10.12737/article_5b55a695093294.45142608
5. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverhnosti // Geometriya i grafika. 2016. №. 1. S. 4–11. DOI:https://doi.org/10.12737/18053
6. Boykov A.A., Efremov A.V., Rustamyan V.V. O studencheskoy nauchno-issledovatel'skoy rabote na geometro-graficheskih kafedrah // Geometriya i grafika. 2023. №. 4. S. 61-75. DOI:https://doi.org/10.12737/2308-4898-2024-11-4-61-75
7. Boykov A.A., Orlova E.V., Chernova A.V., Shkilevich A.A. O sozdanii fraktal'nyh obrazov dlya dizayna i poligrafii i nekotoryh geometricheskih obobscheniyah, svyazannyh s nimi // Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: tradicii i innovacii. Materialy VIII Mezhdunarodnoy nauchno-prakticheskoy internet-konferencii, fevral' – mart 2019 g. – Perm': PNIPU, 2019. – S. 325–339.
8. Boykov A.A., Gudaev I.I. Geometricheskie modeli i algoritmy postroeniya sfericheskih secheniy giperfraktala // Zhurnal estestvennonauchnyh issledovaniy. – 2020. – T.5, №4. – S. 16–25.
9. Boykov A.A., Gudaev I.I. Trehmernye modeli dlya predmetnogo dizayna na osnove algebraicheskih fraktalov // Zhurnal estestvennonauchnyh issledovaniy. – 2021. – T. 6, №4. – S. 53–56.
10. Boykov A. A. O postroenii modeley ob'ektov prostranstva chetyreh i bolee izmereniy v uchebnom processe // Geometriya i grafika. 2018. T. 5. №4. S. 54–71. DOI:https://doi.org/10.12737/article_5c21f96dce5de8.36096061
11. Boykov A. A., Shulaykin D. A. Trehmernaya vizualizaciya geometricheskih obrazov i otnosheniy kompleksnoy ploskosti // Problemy koordinacii raboty tehnicheskih vuzov v oblasti povysheniya kachestva inzhenerno-graficheskoy podgotovki studentov: materialy nauch.-metod. konf. (s. Divnomorskoe, 10–16 sentyabrya 2018 g.). Rostov-na-Donu: DGTU, 2018. S. 163–171.
12. Sal'kov N. A. Parametricheskaya geometriya v geometricheskom modelirovanii // Geometriya i grafika. 2014. №. 3. S. 7–13. DOI:https://doi.org/10.12737/6519
13. Ryzhov N.N. Parametricheskaya geometriya. M.: MADI, 1988. 56 s.