employee
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinbuig, Ekaterinburg, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
The need to create an inexpensive paper-like material based on mineral fibers is due to the protection of thermal insulation of pipelines. Materials used: mineral fibers ‒ asbestos grades M-4-20; binder ‒ vinyl- and vinylidene-chloride latexes VKHVD-65, DVKHB-70; coagulant ‒ aluminum sulfate. Method used: production of samples of asbestos cardboard from a fibrous composition in a TAPPI sheet‒filling machine, wt. h.: 100 asbestos fiber; 5‒60 latex; 3‒10 coagulant. For each composition of the fibrous composition, 10 samples were cast for testing. The properties of the material are characterized by physical‒mechanical parameters: breaking length (L, m); tear resistance (E, mN) and penetration (Po, kPa); absorbency during unilateral wetting (G, g/m2) and capillary (B, mm); degree of sizing (C, c/mm). Results: the strength of castings depends on the nature, binder and coagulant content: for latexes DVKHB-70/ VKHVD-65 ‒ Lmax = (504‒662)/(384‒417) with a significance level of α = 0.05 in the composition, wt.h.: 5‒20 latex; 3‒6 coagulant; Lmin = 206/(132‒168) with α = 0.05 in composition, wt.h.: 25‒60 latex; 7‒10 coagulant; Po(max) = (14‒15)/20 kPa with α = 0.05 at a content of 10/(10‒20) wt.h. latex. Samples with VKHVD-65 are hydrophilic: Gmax / Bmax = (2 ‒3)/(4‒5) with α = 0.05. With an increase in the content of DVKHB-70, the values of G decrease from 1‒3 to zero with α = 0.05; B ≈ 0 for any content of DVKHB-70. The results mean: in theory, the physical and mechanical properties of asbestos cardboard are determined by the film‒forming properties of binders ‒ synthetic latexes; in practice, the compositions of fibrous suspensions for obtaining a protective material with high consumer properties are determined. Conclusion: a key advantage for readers is the practical confirmation of the possibility of creating new composite materials with ingredients of various natures ‒ mineral and organic. The range of latexes with other monomers suitable for the production of asbestos cardboard remains unresolved.
latex, asbestos cardboard, breaking length, tearing resistance, punching resistance, absorbency with unilateral wetting and capillary, degree of sizing
1. Vyunkov S. N. Vliyanie karbamida na otverzhdenie karbamidofomal`degidny`x smol. [The effect of urea on the curing of urea-formaldehyde resins]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2019; (226): 155–161. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2019.226.155-161. URL: https://www.elibrary.ru/ item.asp?id=37233749.
2. Vyunkov S. N., Vasiliev V. V. Modifikaciya otverditelya karbamidoformal`degidny`x smol s nizkim mol`ny`m sootnosheniem formal`degida k karbamidu. [Modification of the hardener of urea-formaldehyde resins with a low molar ratio of formaldehyde to urea]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2023; (243): 284–296. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2023.243.284-296. URL: https://www.elibrary.ru/item.asp?id=53976464.
3. Fedotov A. A., Vakhnina T. N., Titunin A. A., Sviridov A. V. Issledovanie vliyaniya stabilizatorov na svojstva karbamidoformal`degidnogo svyazuyushhego i fanery` FK. [Investigation of the effect of stabilizers on the properties of urea-formaldehyde binder and FC plywood]. Lesotexnicheskij zhurnal. 2020; 10(1) (37): 136–144. (In Russ.). DOI:https://doi.org/10.34220/issn.2222-7962/2020.1/14. URL: https://www.elibrary.ru/item.asp?id=42853667.
4. Leonovich A. A., Sviridov E. A., Glazunova M. G. Poiskovy`e issledovaniya v sozdanii monostrukturny`x drevesnovoloknisty`x plit ponizhennoj goryuchesti. [Exploratory research in the creation of monostructured fiberboard of reduced flammability]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2020; (232): 233–243. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2020.232.233-243. URL: https://www.elibrary.ru/item.asp? id=44256696.
5. Vakhnina T. N., Fedotov A. A., Titunin A. A., Sysoeva I. V. Vliyanie modifikatorov na vremya otverzhdeniya fenoloformal`degidnogo svyazuyushhego dlya pressovaniya fanery` pri nizkotemperaturnom rezhime. [Effect of modifiers on the curing time of phenol-formaldehyde binder for pressing plywood at low temperature]. Lesotexnicheskij zhurnal. 2019; 9(4) (36): 99–108. (In Russ.). DOI:https://doi.org/10.34220/issn.2222-7962/2019.4/11. URL:https://www.elibrary.ru/ item.asp?id= 41748527.
6. Fedotov A. A., Vakhnina T. N., Kotikov S. A. Povy`shenie prochnostny`x pokazatelej fanery` FSF putem ispol`zovaniya modificiruyushhix dobavok k svyazuyushhemu. [Increasing the strength parameters of FSF plywood by using modifying additives to the binder]. Lesotexnicheskij zhurnal. 2020; 10(1) (37): 124–135. (In Russ.). DOI: 10.34220/ issn.2222-7962/2020.1/13. URL: https://www.elibrary.ru/item.asp?id=42853666
7. Fedotov A. A., Vakhnina T. N., Kotikov S. A. Vliyanie faktorov processa proizvodstva na pokazateli fanery` na modificirovannom fenoloformal`degidnom svyazuyushhem. [Influence of production process factors on plywood performance on modified phenol-formaldehyde binder]. Lesotexnicheskij zhurnal. 2021; 11(1) (41): 88–100. (In Russ.). DOI:https://doi.org/10.34220/issn.2222-7962/2021.1/8. URL: https://www.elibrary.ru/item.asp?id=44938468.
8. Nikulina N. S., Dmitrenkov A. I., Tomina E. V., Nikulin S. S., Zhuzhukin K. V. Razrabotka modificiruyushhix sostavov drevesiny` na osnove pobochny`x produktov proizvodstva polibutadiena i metilmetakrilata [Development of modifying wood compositions based on by-products of polybutadiene and methyl methacrylate production]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2023; (245): 318–330. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2023.245.318-330. URL: https://www.elibrary.ru/item.asp?id=54768963.
9. Dmitrenkov A. I., Nikulin S. S., Nikulina N. S., Borovskoi A. M., Nedzelskaya E. A. Issledovanie processa propitki drevesiny` berezy` otrabotanny`m rastitel`ny`m maslom. [Investigation of the process of impregnation of birch wood with used vegetable oil]. Lesotexnicheskij zhurnal. 2020; 10 (2) (38): 161–168. (In Russ.). DOI:https://doi.org/10.34220/issn.2222-7962/2020.2/16. URL: https://www.elibrary.ru/item.asp? id=43171823.
10. Tomina E. V., Dmitrienkov A. I., Zhuzhukin K. V., Khodosova N. A., Mozgovoy N. V. Povy`shenie vodostojkosti drevesiny` propitochny`m sostavom na osnove rastitel`nogo masla s dioksidom kremniya. [Increasing the water resistance of wood with an impregnating composition based on vegetable oil with silicon dioxide]. Lesotexnicheskij zhurnal. 2022; 12(2) (46): 68–79. (In Russ.). DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/6. . URL: https://www.elibrary.ru/item.asp?id= 49049979.
11. Artyomov A. V., Vurasko A. V., Ershova A. S., Buryndin V. G. Vliyanie soderzhaniya gidroliznogo lignina na pokazateli otdelochnogo materiala na osnove plastika bez svyazuyushhego. [The effect of hydrolysis lignin content on the performance of plastic-based finishing material without binder]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2023; 245: 293–307. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2023.245.293-307. URL: https://www.elibrary.ru/item.asp?id=54768961.
12. Lorentzson A. V., Gevorkyants T. D., Moreva Y. L., Chernoberezhsky Y. M. Temperaturnaya zavisimost` koagulyacionnogo dejstviya Al2(SO4)3 na vodnuyu dispersiyu sul`fatnogo lignina. [Temperature dependence of coagulation action of Al2(SO4)3 on the aqueous dispersion of sulfate lignin]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2023; (245): 308–317. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2023.245.308-317. URL: https://www.elibrary.ru/item.asp?id= 54768962.
13. Diaghileva A. B., Smirnova A. I. Sravnitel`noe issledovanie termostabil`nosti drevesiny`, obrabotannoj zol`-gel` kompoziciej na osnove lignina. [Comparative study of the thermal stability of wood treated with a sol-gel composition based on lignin]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2022; (239): 236–247. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2022.239.236-247. URL: https://www.elibrary.ru/item.asp?id=49178598.
14. Belchinskaya L. I., Zhuzhukin K. V., Novikova L. A. Vliyanie ul`trazvukovogo dispergirovaniya propitochnogo sostava drevesiny` na eyo gidrofobizaciyu. [The effect of ultrasonic dispersion of the impregnating composition of wood on its hydrophobization]. Lesotexnicheskij zhurnal. 2019; 9(2) (34):. 126–136. (In Russ.). DOI:https://doi.org/10.34220/issn.2222-7962/2019.2/14. URL: https://www.elibrary.ru/item.asp?id=38472864.
15. Dubovy V. K., Krinitsyn N. A. Vliyanie soderzhaniya i vida svyazuyushhego na prochnost` bumagi iz steklyanny`x volokon. [Influence of the content and type of binder on the strength of glass fiber paper]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2020; (232): 244–251. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2020.232.244-251. URL: https://www.elibrary.ru/item.asp?id=44256697.
16. Dubovy V. K., Suslov G. A. Issledovanie prochnosti sorbcionny`x kompozicionny`x materialov na osnove mikrotonkix steklyanny`x volokon. [Strength study of sorption composite materials based on microfine glass fibers]. Izvestiya Sankt-Peterburgskoj lesotexnicheskoj akademii. 2020; (233): 221–227. (In Russ.). DOI:https://doi.org/10.21266/2079-4304.2020.233.221-227. URL: https://www.elibrary.ru/item.asp? id=44489959.
17. Bagchi S.K., Patnaik R., Rawat I. Beneficiation of paper-pulp industrial wastewater for improved outdoor biomass cultivation and biodiesel production using Tetradesmus obliquus (Turpin) Kützing. Renewable Energy. 2024; 222. 119848. DOI: https://doi.org/10.1016/j.renene.2023.119848.
18. Sharma D., Sahu S., Singh G. An eco-friendly process for xylose production from waste of pulp and paper industry with xylanase catalyst. Sustainable Chemistry for the Environment. 2023; 3. 100024. DOI: https://doi.org/10.1016/ j.scenv.2023.100024.
19. Steephen A., Preethi V., Annenewmy B. Solar photocatalytic hydrogen production from pulp and paper wastewater. International Journal of Hydrogen Energy. 2024; 52(A):1393‒1404. DOI: https://doi.org/10.1016/ j.ijhydene.2023.03.381.
20. Romaní A., Del-Río P.G., Rubira A. Co-valorization of discarded wood pinchips and sludge from the pulp and paper industry for production of advanced biofuels. Industrial Crops and Products. 2024; 209. 117992. DOI: https://doi. org/10.1016/j.indcrop.2023.117992.
21. Yang M., Li J., Wang S. Status and trends of enzyme cocktails for efficient and ecological production in the pulp and paper industry. Journal of Cleaner Production. 2023; 418. 138196. DOI: https://doi.org/10.1016/j.jclepro. 2023;138196.
22. Axelrod L., Charron P., Tahir I. The effect of pulp production times on the characteristics and properties of hemp-based paper. Materials Today Communications. 2023; 34. 104976. DOI: https://doi.org/10.1016/j.mtcomm.2022. 104976.
23. Taylor N.M., Pilkington G.A., Snow T., Dowding P.J. Surface forces and friction between Langmuir-Blodgett polymer layers in a nonpolar solvent. Journal of Colloid and Interface Science. 2024; 653(V):1432‒1443. DOI: https://doi.org/10.1016/j.jcis.2023.09.146.
24. Elovenko D., Kräusel V. The study of thermal conductivity of asbestos cardboard and fire clay powder to assess the possibility of their application in prefabricated structures of cylindrical housings of pressure vessels. Materials Today: Proceedings. 2019; 19(5): 2389‒2395. DOI: https://doi.org/10.1016/j.matpr.2019.08.041.
25. Fitzgerald S.M. Resolving asbestos and ultrafine particulate definitions with carcinogenicity. Lung Cancer. 2024; 189. 107478. DOI: https://doi.org/10.1016/j.lungcan.2024.107478.
26. Obmiński A. Asbestos in building and its destruction. Construction and Building Materials. 2020; 249. 118685. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118685
27. Akylbekov Y., Shevko V., Karatayeva G. Thermodynamic prediction of the possibility of comprehensive processing chrysotile-asbestos waste. Case Studies in Chemical and Environmental Engineering. 2023; 8. 100488. DOI: https://doi.org/10.1016/j.cscee.2023.100488.
28. Avataneo C., Petriglieri J.R., Capella S. Chrysotile asbestos migration in air from contaminated water: An experimental simulation. Journal of Hazardous Materials. 2022; 424(S). 127528. DOI: https://doi.org/10.1016/j.jhazmat.2021.127528.
29. Tan Y., Zou Z., Qu J. Mechanochemical conversion of chrysotile asbestos tailing into struvite for full elements utilization as citric-acid soluble fertilizer. Journal of Cleaner Production. 2021; 283. 124637. DOI: https://doi.org/10. 1016/j.jclepro.2020.124637.
30. Castoldi R.S., Liebscher M., Souza L.M.S. Effect of polymeric fiber coating on the mechanical performance, water absorption, and interfacial bond with cement-based matrices. Construction and Building Materials. 2023; 404. 133222. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133222.
31. Bakatovich A., Gaspar F., Boltrushevich N. Thermal insulation material based on reed and straw fibres bonded with sodium silicate and rosin. Construction and Building Materials. 2022; 352. 129055. DOI: https://doi.org/10.1016/j. conbuildmat.2022.129055.
32. Geng Y., Nie Y., Du H. Coagulation performance and floc characteristics of Fe–Ti–V ternary inorganic coagulant for organic wastewater treatment. Journal of Water Process Engineering. 2023; 56. 104344. DOI: https://doi.org/10.1016/j.jwpe.2023.104344.
33. Yi J., Chen Z., Xu D. Preparation of a coagulant of polysilicate aluminum ferric from foundry dust and its coagulation performance in treatment of swine wastewater. Journal of Cleaner Production. 2024; 434. 140400. DOI: https://doi.org/10. 1016/j.jclepro.2023.140400.
34. Zeng H., Tang H., Sun W. Deep dewatering of bauxite residue via the synergy of surfactant, coagulant, and flocculant: Effect of surfactants on dewatering and settling properties. Separation and Purification Technology. 2022. 302. 122110. DOI: https://doi.org/10.1016/j.seppur.2022;122110.
35. Chen J., Li X. , Cai W. High-efficiency extraction of aluminum from low-grade kaolin via a novel low-temperature activation method for the preparation of poly-aluminum-ferric-sulfate coagulant. Journal of Cleaner Production. 2020; 257. 120399. DOI: https://doi.org/10.1016/j.jclepro.2020.120399.
36. Karyab H., Ghasemi M., Ghotbinia F. Efficiency of chitosan nanoparticle with polyaluminum chloride in dye removal from aqueous solutions: Optimization through response surface methodology (RSM) and central composite design (CCD). International Journal of Biological Macromolecules. 2023; 249. 125977. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125977.
37. Milbrandt A., Zuboy J., Coney K. Paper and cardboard waste in the United States: Geographic, market, and energy assessment. Waste Management Bulletin. 2024; 2(1): 21‒28. DOI: https://doi.org/10.1016/j.wmb.2023.12.002.
38. Kuffel A., Daeid N.N., Gray A. Comparison of swabbing and cutting-out DNA collection methods from cotton, paper, and cardboard surfaces. Forensic Science International: Synergy. 2024; 8. 100453. DOI: https://doi.org/10.1016/j.fsisyn.2023.100453.
39. Mazaherifar M.H., Coşereanu C., Timar C.M. Physical and mechanical properties of foam-type panels manufactured from recycled cardboard. Construction and Building Materials. 2024; 411. 134685 DOI: https://doi.org/10.1016/j.conbuildmat.2023.134685
40. Mahdi S., Xie T., Venkatesan S. , Gravina R.J. Mechanical characterisation and small-scale life-cycle assessment of polypropylene macro-fibre blended recycled cardboard concrete. Construction and Building Materials. 2023; 409. 133902. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133902.
41. Strozzi M., Smirnov V.V., Pellicano F. Nonlocal anisotropic elastic shell model for vibrations of double-walled carbon nanotubes under nonlinear van der Waals interaction forces. International Journal of Non-Linear Mechanics. 2022; 146. 104172. DOI: https://doi.org/10.1016/j.ijnonlinmec.2022.104172.
42. Chen K., Wu J., Yarin A.L. Electrospun membranes filtering 100 nm particles from air flow by means of the van der Waals and Coulomb forces. Journal of Membrane Science. 2022; 644.120138. DOI: https://doi.org/10.1016/j.memsci.2021.120138.
43. Zhang J., Wang C., Zhao H. Dynamic surfaces of latex films and their antifouling applications. Journal of Colloid and Interface Science. 2024; 654(V):1281‒1292. DOI: https://doi.org/10.1016/j.jcis.2023.10.138.
44. Krinitsyn N. A., Dubovy V. K., Polyakova K. V., Koverninsky I. N. Issledovanie vliyaniya vida svyazuyushhego na svojstva fil`troval`ny`x steklovoloknisty`x bumag dlya ochistki vozduxa [Investigation of the effect of the type of binder on the properties of filter fiberglass papers for air purification]. Izv. vuzov. Lesn. zhurn. 2022; (2): 178–192. (In Russ.). DOI:https://doi.org/10.37482/0536-1036-2022-2-178-192. URL: https://www.elibrary.ru/item.asp?id= 48211760.