Yakutsk, Russian Federation
Yakutsk, Russian Federation
We analyze strong space weather disturbances during first ten days of September 2017, using the geomagnetic Dst index, parameters of normals to interplanetary shock fronts, direct measurements of interplanetary magnetic field, solar wind, and cosmic ray parameters. By applying spectral analysis methods to interplanetary medium data, we analyze MHD waves at the pre-front of two interplanetary shocks responsible for geomagnetic disturbances on September 6 and 7, 2017. The main results are as follows: the contribution of three branches of MHD waves (Alfvén, fast and slow magnetosonic) to the observed spectrum of the interplanetary magnetic field modulus has been established. We have confirmed the conclusion that the generation of Alfvén waves and fast magnetosonic waves is due to the presence of low-energy proton fluxes (Ep~1 MeV) at the pre-front of interplanetary shocks. We have also discovered a predominant contribution of slow magnetosonic waves to the observed spectrum of the interplanetary magnetic field modulus, but its reason is yet unknown. It is noted that different orientations of the normals to the interplanetary shock fronts and to the direction of the interplanetary magnetic field average vector on spacecraft located fairly close to each other may indicate waviness of the shock front structure.
interplanetary magnetic field, solar wind, MHD waves, interplanetary shock, geomagnetic storm, cosmic rays, Forbush decrease
1. Barkhatov N.A., Belliustin N.S., Bougeret J.-L., Sakharov S.Yu., TokarevYu.V. Influence of the solar-wind magnetic field on the magnetosheath turbulence behind the bow shock. Radiophysics and Quantum Electronics. 2001, vol. 44, no. 12, pp. 915–923.
2. Berezhko E.G., Starodubtsev S.A. Nature of the dynamics of the cosmic-ray fluctuation spectrum. Bull. Academy of Sciences of USSR. Ser. Physics. 1988, vol. 52, pp. 2361–2363. (In Russian).
3. Borovsky J.E. What magnetospheric and ionospheric researchers should know about the solar wind. J. Atmos. Solar-Terr. Phys. 2020, vol. 204, 105271. DOI:https://doi.org/10.1016/j.jastp.2020.105271.
4. Borovsky J.E. Further investigation of the effect of upstream solar-wind fluctuations on solar-wind/ magnetosphere coupling: Is the effect real? Front. Astron. Space Sci. 2023, vol. 9, 17 p. DOI:https://doi.org/10.3389/fspas.2022.975135.
5. Borovsky J.E., Funsten H.O. Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 2003, vol. 108, p. 1246. DOI: 10.1029/ 2002JA009601.
6. Bruno A., Christian E.R., de Nolfo G.A. Spectral analysis of the September 2017 solar energetic particle events. Space Weather. 2019, vol. 17, pp. 419–437. DOI:https://doi.org/10.1029/2018SW002085.
7. Clilverd M.A., Rodger C.J., Brundell J.B., Dalzell M., Martin I., Mac Manus D.H., et al. Long-lasting geomagnetically induced currents and harmonic distortion observed in New Zealand during the 7–8 September 2017 disturbed period. Space Weather. 2018, vol. 16, pp. 704–717. DOI:https://doi.org/10.1029/2018SW001822.
8. D’Amicis R., Perrone D., Vell M., Sorriso-Valvo L., Telloni D., Bruno R., De Marco R. Investigating Alfvénic turbulence in fast and slow solar wind streams. Universe. 2022, vol. 8, p. 352. DOI:https://doi.org/10.3390/universe8070352.
9. Desai M., Dayeh M., Ebert R., Smith C., Mason G., Li G. Ion acceleration at CME-driven shocks near the Earth and the Sun. Proc. IP Conf. 2012, vol. 1500, iss. 1, pp. 80–85. DOI:https://doi.org/10.1063/1.4768748.
10. Despirak I.V., Kleimenova N.G., Gromova L.I., Gromov S.V., Malysheva L.M. Supersubstorms during storms of September 7–8, 2017. Geomagnetism and Aeronomy. 2020, vol. 60, no. 3, pp. 292–300. DOI:https://doi.org/10.1134/S0016793220030044.
11. Despirak I.V., Setsko P.V., Sakharov Ya.A., Lubchich A.A. Geomagnetically induced currents during supersubstorms on September 7–8, 2017. Bulletin of the Russian Academy of Sciences: Physics. 2023, vol. 87, no. 7, pp. 999–1006. DOI: 10.3103/ S1062873823702283.
12. Gololobov P., Starodubtsev S., Grigoryev V., Zverev A. NMDB and space weather forecasting. In: Cosmic ray studies with neutron detectors. 2023, vol. 2, pp. 69–80. DOI: 10.38072/ 2748-3150/p32.
13. Grigoryev A.V., Starodubtsev S.A., Grigoryev V.G., Usoskin I.G., Mursula K. Fluctuations of cosmic rays and IMF in the vicinity of interplanetary shocks. Adv. Space Res. 2008, vol. 41, pp. 955–961. DOI:https://doi.org/10.1016/j.asr.2007.04.044.
14. Howard T. Coronal Mass Ejections: An Introduction. Astrophysics and Space Science Library. Springer Science+Business Media, LLC. 2011, vol. 376. DOI:https://doi.org/10.1007/978-1-4419-8789-1.
15. Jankovicova D., Voros Z., Simkanin J. The influence of solar wind turbulence on geomagnetic activity. Nonlinear Processes Geophys. 2008, vol. 15, pp. 53–59.
16. Kravtsova M.V., Sdobnov V.E. Ground-Level Enhancement in the Intensity of Cosmic Rays during the Decay Phase of Solar Cycle 24: Spectra and Anisotropy. Bull. Russian Academy of Sciences: Physics. 2021, vol. 85, no. 8, pp. 919–921. DOI:https://doi.org/10.3103/S1062873821080128.
17. Luttrell A.H. Power Spectra of Low Frequency MHD Turbulence up- and downstream of interplanetary fast shocks within 1 au. Ann. Geophys. 1986, vol. 4, pp. 439–446.
18. Luttrell A.H. Evidence for slow mode MHD Turbulence in the solar wind: post-shock observations at 0.31 AU. J. Geophys. Res. 1987, vol. 92, pp. 13653–13657.
19. Luttrell A.H., Richter A.K. Study of MHD Fluctuations upstream and downstream of quasiparallel interplanetary shocks. J. Geophys. Res. 1987, vol. 92, pp. 2243–2252.
20. Maksimov D.S., Kogogin D.A., Nasyrov I.A., Zagretdinov R.V. Effects of September 5–12, 2017 solar flares on regional disturbance of Earth’s ionosphere as recorded by GNSS stations located in the Volga Federal District of the Russian Federation. Solar-Terr. Phys. 2023, vol. 9, iss. 2, pp. 48–54. DOI:https://doi.org/10.12737/stp-92202306.
21. Mishev A., Usoskin I., Raukunen O., Paassilta M., Valtonen E., Kocharov L., Vainio R. First analysis of ground-level enhancement (GLE72) on 10 September 2017: Spectral and anisotropy characteristics. Solar Phys. 2018, 293:136. DOI:https://doi.org/10.1007/s11207-018-1354-x.
22. Mostafa N., Ghamry E., Ellithi A., Gobashy M., Fathy A. Multi-space observations of the storm sudden commencement (September 2017) and its effect on the geomagnetic field. Adv. Space Res. 2022, vol. 70, pp. 641–651. DOI:https://doi.org/10.1016/j.asr.2022. 04.023.
23. Pitna A., Safrankova J., Nemcek Z., Goncharov O., Němec F., Přech L., et al. Density fluctuations upstream and downstream of interplanetary shocks. Astrophys. J. 2016, vol. 819, pp. 41–50. DOI:https://doi.org/10.3847/0004-637X/819/1/41.
24. Rezeau L., Belmont G. Magnetic turbulence at the magnetopause, a key problem for understanding the solar wind/magnetosphere exchanges. Space Sci. Rev. 2001, vol. 95, pp. 427–441.
25. Riazantseva M.O., Rakhmanova L.S., YermolaevYu.I., Lodkina I.G., Zastenker G.N., Chesalina L.S. Characteristics of turbulent solar wind in plasma compression regions flow. Cosmic Res. 2020, vol. 58, no. 6, pp. 468–477. DOI: 10.1134/ S001095252006009X.
26. Safargaleev V.V., Tereshchenko P.E. Hertz Range Pulsations during recovery phase of the magnetic storm on September 7–8, 2017, and relation between their dynamics and changes in the parameters of the interplanetary medium. Geomagnetism and Aeronomy. 2019, vol. 59, no. 3, pp. 281–295. DOI:https://doi.org/10.1134/S0016793219030125.
27. Starodubtsev S.A., Grigoriev A.V., Grigoriev V.G., Usoskin I.G., Mursula K. Fluctuations of cosmic rays and IMF in the vicinity of interplanetary shock wave fronts. Bull. Russian Academy of Sciences: Physics. 2007, vol. 71, no. 7, pp. 991–993. DOI:https://doi.org/10.3103/S1062873807070295.
28. Starodubtsev S.A., Shadrina L.P. Distribution of MHD turbulence in the vicinity of the leading front of large-scale solar wind disturbances. Geomagnetism and aeronomy. 1998, vol. 38, pp. 9–15. (In Russian).
29. Starodubtsev S.A., Zverev A.S., GololobovP.Yu., Grigoryev V.G. Cosmic ray fluctuations and MHD waves in the solar wind. Solar-Terr, Phys. 2023, vol. 9, pp. 73–80. DOI: 10.12737/ stp-92202309.
30. Struminskii A.B., Grigor’eva I.Yu., LogachevYu.I., Sadovskii A.M. Solar electrons and protons in the events of September 4–10, 2017 and related phenomena. Plasma Physics Reports. 2020, vol. 46, no. 2, pp. 174–188. DOI:https://doi.org/10.1134/S1063 780X20020130.
31. Toptygin I.N. Cosmic Rays in Interplanetary Magnetic Fields. Moscow, Nauka Publ., 1983, 304 p. (In Russian).
32. Yahnin A.G., Yahnina T.A.1 MeV Electron dynamics in the outer radiation belt during geomagnetic storms on September 7–8, 2017. Bull. Russian Academy of Sciences: Physics. 2022, vol. 86, no. 3, pp. 275–280. DOI:https://doi.org/10.3103/S10 62873822030273.
33. URL: https://wdc.kugi.kyoto-u.ac.jp/dst_provisional/index.html (accessed January 21, 2024).
34. URL: http://pgia.ru/cosmicray (accessed January 21, 2024).
35. URL: https://omniweb.gsfc.nasa.gov/ftpbrowser/wind_epact_step_flux_hr.html (accessed January 21, 2024).
36. URL: https://omniweb.gsfc.nasa.gov/form/sc_merge_min1.html (accessed January 21, 2024).
37. URL: https://lweb.cfa.harvard.edu/shocks (accessed January 21, 2024).
38. URL: https://umbra.nascom.nasa.gov/SEP (accessed January 21, 2024).
39. URL: https://www.spaceweather.com (accessed January 21, 2024).