LOMONOSOV AND COMPUTER TECHNOLOGY IN TEACHING DESCRIPTIVE GEOMETRY
Abstract and keywords
Abstract (English):
The famous phrase of M.V. Lomonosov: "Mathematics should be studied for it puts mind in order". It is quite possible to rephrase it for descriptive geometry, because geometry is math too. The invention of microprocessor technology, the advent of the personal computer, the discovery of the GMR effect (1988), which dramatically increased the speed and memory capacity of the PC, are called the fourth information revolution in the history of mankind. The whole world took note of this and began to apply, only in Russia some extreme reformers of geometry assumed that if computer graphics arose, it might well replace geometry. Computer graphics, of course, can be applied to solve various geometric problems. But what is important for a University that aims to teach? The process of learning or the mere result on display obtained just by pressing the buttons? More important is how this result is obtained and with what algorithm. Therefore, the feasibility of the use of graphic programs in solving typical tasks of descriptive geometry is very much an open question. A student solving the task via computer is concerned not with the search of geometric algorithm, but with the search of a suitable option that could give an answer. But not all geometrical problems are amenable to the available buttons. Submerged into virtual world, a student begins to think in terms of this world and cease to be aware and to pay attention to fundamental, basic geometric regularities taught in descriptive geometry course. Comparing geometric and computational algorithms is incorrect because there is no knowledge of the “hidden files” of graphic editor. We can assume that the iterative scheme is implemented. Frontal iterative computer graphics schemes are good for getting answers, but unsuitable for the study of constructive geometry methods.

Keywords:
descriptive geometry, three-dimensional computer graphics, affine line, secondary school geometric training, proactivity, iterative methods.
Text

«Математику уже затем учить надо, что она ум в порядок приводит». Перефразируя М.В. Ломоносова, то же самое можно сказать и о начертательной геометрии (НГ), поскольку НГ – раздел математики.

По направлению представленных ниже рассуждений уже не раз и не два выступали со статьями профессионалы в области геометрии [1–4; 6; 7; 9; 14–23; 25; 26], однако дело никак не может закончиться подписанием «мирного договора». Поэтому представляется необходимым предоставить и свою «каплю» для разрушения крайне агрессивной роли воинствующих реформаторов.

Рассматривая варианты учебных программ по направлению подготовки «Инженерное дело, технологии и технические науки» и роль компьютерной графики в этих программах, ограничимся рамками первого семестра. Отметим, что 15–20 лет назад никаких альтернатив курсу НГ в первом семестре не было. Заметим также, что сомнения в практической пользе изучения НГ возникали лишь у нерадивых студентов.

Изобретение микропроцессорных технологий, появление персонального компьютера, открытие GMR-эффекта (1988), позволившее резко увеличить быстродействие и объем памяти ПК, называют четвертой в истории человечества информационной революцией. Весь мир мгновенно принял новые условия и новые возможности, связанные с удивительной, немыслимой ранее легкостью и простотой получения, хранения и обмена любыми объемами информации.

References

1. Bojkov A.A. Komp´juternye sredstva podderzhki uchebnyh kursov graficheskih disciplin [Computer means of graphic disciplines’ training courses support]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 29-30. DOI:https://doi.org/10.12737/784. (in Russian).

2. Voloshinov D.V., Solomonov K.N. Konstruktivnoe geometricheskoe modelirovanie kak perspektiva prepodavanija graficheskih discipline [Constructive geometric modeling as graphic disciplines’ teaching prospect]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 10-14. DOI:https://doi.org/10.12737/778. (in Russian).

3. Voloshinov D.V. O perspektivah razvitija geometrii i ee instrumentarija [About Prospects of Development of Geometry and Its Tools]. Geometrija i grafika [Geometry and Graphics]. 2014, V. 2, I. 1, pp. 15-21. DOI:https://doi.org/10.12737/3844. (in Russian).

4. Vyshnepol´skij V.I., Salkov N.A. Celi i metody obuchenija grafiche-skim disciplinam [The aims and methods of teaching drawing]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 8-9. DOI:https://doi.org/10.12737/777. (in Russian).

5. Golovanov N.N. Geometricheskoe modelirovanie [Geometric modeling]. Moscow, Izd-vo fiziko-matematicheskoj literatury Publ., 2012. 472 p.

6. Ivanov G.S. Kompetentnostnyj podhod k soderzhaniju kursa nachertatel´noj geometrii [Competence approach to descriptive geometry syllabus]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 3-5. DOI:https://doi.org/10.12737/775. (in Russian).

7. Ivanov G.S. Perspektivy nachertatel´noj geometrii kak uchebnoj discipliny [Descriptive geometry prospects as educational subject]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 26-27. (in Russian).

8. Ivanov G.S. Teoreticheskie osnovy nachertatel´noj geometrii [Theoretical foundations of descriptive geometry]. Moscow, Mashinostroenie Publ., 1998. 157 p.

9. Ishhenko A.A. K voprosu o neobhodimosti prepodavanija nachertatel´noj geometrii i grafiki dlja himikov i himikovtehnologov [To the question about the necessity of descriptive geometry and graphics teaching for chemists and chemistry technologists]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 6-7. DOIhttps://doi.org/10.12737/776. (in Russian).

10. Klejn F. Jelementarnaja matematika s tochki zrenija vysshej [Elementary mathematics from the point of view of the higher]. Moscow, Nauka Publ., 1987. 416 p.

11. Korotkij V.A. Nachertatel´naja geometrija. Konspekt lekcij [Descriptive geometry. Lecture notes]. Cheljabinsk, Izdatel´skij centr JuUrGU Publ., 2014. 191 p.

12. Korotkij V.A. Postroenie krivoj vtorogo porjadka, prohodjashhej cherez dannye tochki i kasajushhejsja dannyh prjamyh [The construction of the curve of the second order passing through the data points and data concerning direct]. Svid. o gosudarstvennoj registracii programmy dlja JeVM № 2011611961 ot 04.03.2011.

13. Korotkij V.A. Sinteticheskie algoritmy postroenija krivoj vtorogo porjadka. Vestnik komp´juternyh i informacionnyh tehnologij [Synthetic algorithms for constructing a curve of the second order]. 2014, I. 11, pp. 20-24. (in Russian).

14. Korotkij V.A., Khmarova L.I. Nachertatel´naja geometrija na jekrane komp´jutera [Descriptive geometry on computer screen]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 32-34. (in Russian).

15. Leparov M.N., Popov M.H. Sostojanie i tendencii geometro-graficheskoj podgotovki kak komponenty inzhenernogo obrazovanija v Bolgarii [Status and Trends of Geometrical-Graphic Training as a Component of Engineering Education in Bulgaria]. Geometrija i grafika [Geometry and Graphics]. 2014, V. 2, I. 1, pp. 22-29. DOI:https://doi.org/10.12737/3845. (in Russian).

16. Naumovich N.V. Geometricheskie mesta v prostranstve i zadachi na postroenie [Geometrical thing in space and construction tasks]. Moscow, Uchpedgiz Publ., 1962. 152 p.

17. Salkov N.A. Analiz FGOSov novogo pokolenija [Analysis of Federal State Educational Standards (FSES) of new generation]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 28-31. (in Russian).

18. Salkov N.A. Iskusstvo i nachertatel´naja geometrija [Art and Descriptive Geometry]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 3-4, pp. 3-7. DOI:https://doi.org/10.12737/2123. (in Russian).

19. Salkov N.A. Kurs nachertatel´noj geometrii Gaspara Monzha [Gaspard Monge’s Descriptive Geometry Course]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 3-4, pp. 52-56. DOI:https://doi.org/10.12737/2135. (in Russian).

20. Salkov N.A. Nachertatel´naja geometrija do 1917 goda [Descriptive Geometry until 1917]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 18-20. DOI:https://doi.org/10.12737/780. (in Russian).

21. Seregin V.I., Ivanov G.S., Dmitrieva I.M., Murav´ev K.A. Mezhdisciplinarnye svjazi nachertatel´noj geometrii i smezhnyh razdelov vysshej matematiki [Interdisciplinary connections of descriptive geometry and related sections of higher mathematics]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 3-4, pp. 8-12. DOI:https://doi.org/10.12737/2124. (in Russian).

22. Stolbova I.D. Aktual´nye problemy graficheskoj podgotovki studentov v tehnicheskih vuzah [Actual Problems of Graphic Training of Students at Technical High Educational Institutions]. Geometrija i grafika [Geometry and Graphics]. 2014, V. 2, I. 1, pp. 30-41. DOI:https://doi.org/10.12737/3846. (in Russian).

23. Tihonov-Bugrov D.E. O nekotoryh problemah graficheskoj podgotovki v tehnicheskih vuzah (vzgljad iz Sankt-Peterburga) [Some Problems of Graphics Training at Technical High Educational Institutions (view from St. Petersburg)]. Geometrija i grafika [Geometry and Graphics]. 2014, V. 3, I. 1, pp. 46-52. DOI:https://doi.org/10.12737/3848. (in Russian).

24. Foks A. Vychislitel´naja geometrija [Computational geometry]. Moscow, Mir Publ., 1982. 304 p.

25. Hejfec A.L. Inzhenernaja komp´juternaja grafika Autocad [Engineering computer graphics Autocad]. Moscow, Dialog-MIFI Publ., 2002. 432 p.

26. Hejfec A.L. Reorganizacija kursa nachertatel´noj geometrii kak aktu-al´naja zadacha razvitija kafedr grafiki [Descriptive geometry course reorganization as the actual task of graphics chairs development]. Geometrija i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 21-23. DOI:https://doi.org/10.12737/781. (in Russian).

Login or Create
* Forgot password?