SYNTHETIC REPRESENTATION OF THE "OBLIQUE SYMMETRY" TRANSFORMATION USING THE EXAMPLE OF AN ELLIPSE
Abstract and keywords
Abstract (English):
Geometric transformations play a pivotal role in computer graphics, determining the position and shape of objects. In machine learning, they are applied for processing and analyzing data, such as in images. In geometric surface modeling, they are utilized for the creation and transformation of three-dimensional forms. In physics, geometric transformations assist in describing the motion of objects in space and time. The aim of this work is to analyse and study the geometric transformation known as "oblique symmetry." Primarily, the article seeks to elucidate a number of important properties of this transformation, expanding the field of knowledge in perspective-affine correspondence. Throughout the study, the principal directions of oblique symmetry are identified, and their relationship with the axis and direction of the transformation is established. It is crucial to emphasise that the analysis makes it evident that the axis and the direction of symmetry are equivalent and interchangeable. Additionally, the article addresses the challenge of transforming an arbitrary ellipse, defined by its semi-axes, into a circle of equal area. In this context, a method is proposed to determine the axis and direction of oblique symmetry for a given ellipse. Based on the results obtained and the analysis conducted, the authors propose a geometric algorithm that provides the capacity to resolve positional problems in the field of descriptive geometry. This algorithm also offers a novel method for constructing ellipses with given semi-axes, which holds practical significance in various engineering and geometric issues. In the conclusion of the article, a specific example of applying the developed method is provided, clearly demonstrating its practical value and real capabilities in solving positional problems in the field of descriptive geometry. Moreover, directions for future research in the field of shape formation are suggested, utilising the "oblique symmetry" transformation in the spaces and .

Keywords:
affine correspondence, oblique symmetry transformation, positional problems, geometric transformations, conics, descriptive geometry
References

1. Antonova I.V. Solomonova E.V., Kadykova N.S. Matematicheskoye opisaniye chastnogo sluchaya kvazivrashcheniya fokusa ellipsa vokrug ellipticheskoy osi [Mathematical description of the special case of quasi-rotation of the focus of an ellipse around the elliptic axis]. Geometriya i grafika [Geometriya i grafika]. 2021, V. 9, I. 1, rr. 39-45. DOI:https://doi.org/10.12737/2308-4898-2021-9-1-39-45. (in Russian)

2. Bayanov E.V. Dvumernoe prostranstvo, kak osnova geometricheskix postroenij [Two-dimensional space as the basis of geometric constructions]. Aktual`ny`e nauchny`e issledovaniya v sovremennom mire [Current scientific research in the modern world]. 2020, I. 8-1(64), rr. 122-124. (in Russian)

3. Beglov I.A. Formoobrazovanie poverxnostej kvazivrashheniya n-ogo poryadka [Formation of surfaces of quasi-rotation of the nth order]. Problemy mashinovedeniya: materialy IV Mezhdunarodnoj nauchno-texnicheskoj konferencii [Problems of mechanical engineering: materials of the IV International Scientific and Technical Conference]. Omsk, Omskij gosudarstvenny`j texnicheskij universitet, 2020, rr. 419-426. (in Russian)

4. Bermant A.F. Geometricheskiy spravochnik po matematike (Atlas krivykh). CH. 1. [Geometric reference to mathematics (Atlas of curves). Part 1]. Moskov-Leningrad, ONGIZ NKTP Publ., 1937. 209 p. (in Russian)

5. Bojkov A.A. Sozdanie komp`yuterny`x modelej dinamicheskix kanalovy`x poverxnostej s pomoshh`yu yazy`ka geometricheskix postroenij [Creation of computer models of dynamic channel surfaces using a language of geometric constructions]. Vestnik komp`yuterny`x i informacionny`x texnologij. [Bulletin of Computer and Information Technologies]. 2022, V. 19, I. 10(220), rr. 15-29. - DOIhttps://doi.org/10.14489/vkit.2022.10.pp.015-029. (in Russian)

6. Borovikov I.F., Ivanov G.S. Geometricheskie preobrazovaniya v inzhenernoj geometrii [Geometric transformations in engineering geometry]. Nauka i obrazovanie [Science and education]. 2015, I. 5, rr. 334-347. DOI:https://doi.org/10.7463/0515.0770568. http://www.elibrary.ru/download/elibrary_23850017_95813882.pdf (Accessed 13 September 2023). (in Russian)

7. Vy`shnepol`skij V.I., N.S. Kadykova, A.V. Efremov, K.T. Egiazaryan Metodicheskie sistemy` podgotovki i provedeniya olimpiad i razvitiya intellektual`ny`x sposobnostej studentov v RTU MIRE`A [Methodological systems for preparing and conducting Olympiads and developing the intellectual abilities of students at RTU MIREA]. Geometriya i grafika [Geometriya i grafika]. 2023, V. 11, I. 1, rr. 44-60. DOI:https://doi.org/10.12737/2308-4898-2023-11-1-44-60. (in Russian)

8. Gryaznov Ya.A. Matematicheskaya model` otseka kanalovoj poverxnosti, zadannoj diskretny`m karkasom obrazuyushhix [Mathematical model of a channel surface compartment defined by a discrete frame of generatrices]. Vestnik Moskovskogo gosudarstvennogo universiteta lesa - Lesnoj vestnik [Bulletin of the Moscow State Forestry University - Forest Bulletin]. 2013, I. 3, rr. 193-195.

9. Gryaznov Ya.A. Otsek kanalovoj poverxnosti kak obraz cilindra v rassloyaemom obrazovanii [Channel surface compartment as an image of a cylinder in a layered formation]. Geometriya i grafika [Geometriya i grafika]. 2013, V. 1, I. 1, rr. 17-19. DOI:https://doi.org/10.12737/463. (in Russian)

10. Ivanov G.S. Konstruirovanie texnicheskix poverxnostej (matematicheskoe modelirovanie na osnove nelinejny`x preobrazovanij) [Design of technical surfaces (mathematical modeling based on nonlinear transformations)]. Moscow, Mechanical engineering Publ., 1987. 192 r. (in Russian)

11. Ivanov G.S. Teoreticheskie osnovyi nachertatelnoy geometrii [Theoretical Foundations of Descriptive Geometry]. Moscow, Mechanical engineering Publ., 1988. 157 p. (in Russian)

12. Klejn F. Elementarnaya matematika s tochki zreniya vysshej [Elementary Mathematics from the Point of View of Higher]. Moscow, Nauka Publ., 1987. 416 p. (in Russian)

13. Kokareva YA.A. Konstruirovaniye kanalovykh poverkhnostey s peremennoy obrazuyushchey i ploskost'yu parallelizma na osnove ekviaffinnykh preobrazovaniy ploskosti [Constructing channel surfaces with a variable generatrix and a plane of parallelism based on equiaffine transformations of the plane]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 1, pp. 12-20. DOI:https://doi.org/10.12737/25119. (in Russian)

14. Korotkij V.A., Usmanova E.A. Krivy`e vtorogo poryadka v zadachax formoobrazovaniya arxitekturny`x obolochek [Second-order curves in problems of shaping architectural shells]. Izvestiya VUZov. Seriya "Stroitel`stvo" [News of universities. Series "Construction"]. 2014, I. 9-10 (669-670), rr. 101-107.

15. Leparov M.N. O geometrii, eshhe odin raz [About geometry, one more time]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 1, pp. 3-13. DOI:https://doi.org/10.12737/2308-4898-2022-10-1-3-13. (in Russian)

16. Panchuk K.L., Myasoedova T.M., Lyubchinov E.V. Tsiklicheskiye poverkhnosti, soprovozhdayushchiye nelineychatyye kvadriki vrashcheniya [Cyclic surfaces accompanying nonlinear quadrics of revolution]. Omskiy nauchnyy vestnik [Omsk Scientific Bulletin]. 2023, I. 3(187), rr. 23-29. DOI:https://doi.org/10.25206/1813-8225-2023-187-23-29.

17. Sal`kov N.A. Geometricheskoe modelirovanie i nachertatel`naya geometriya [Geometric modeling and descriptive geometry] Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 31-40. DOI:https://doi.org/10.12737/22841. (in Russian)

18. Sal'kov N.A. Ob odnom sposobe formirovaniya konik [About one way of forming conics]. Geometriya i grafika [Geometry and Graphics]. 2022, V. 10, I. 4, pp. 3-12. DOI:https://doi.org/10.12737/2308-4898-2022-10-4-3-12. (in Russian)

19. Sal`kov N.A., Vyshnepol`skij V.I., Aristov V.M., Kulikov V.P. Olimpiady` po nachertatel`noj geometrii kak katalizator e`vristicheskogo my`shleniya [Olympiads in descriptive geometry as a catalyst for heuristic thinking. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 2, pp. 93-101. DOI:https://doi.org/10.12737/artcle_5953f3767b1e80.12067677. (in Russian)

20. Sal`kov N.A. Sistemnyj podxod k izucheniyu nachertatel`noj geometrii [A systematic approach to the study of descriptive geometry]. Geometriya i grafika [Geometry and Graphics]. 2022, V. 10, I. 1, pp. 14-23. DOI:https://doi.org/10.12737/2308-4898-2022-10-1-14-23. (in Russian)

21. Sal'kov N.A. Ellips: kasatel'naya i normal' [Ellipse: Tangent and Normal]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 35-37. DOI:https://doi.org/10.12737/470. (in Russian)

22. Strashnov S.V. Velaroidal`nye obolochki i obolochki velaroidal`nogo tipa [Velaroids and Velaroids]. Geometriya i grafika [Geometry and Graphics]. 2022, V. 10, I. 2, pp. 11-19. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-11-19. (in Russian)

23. Chetveruxin N.F. Vysshaya geometriya [Higher geometry]. Moscow, Publ., Gosudarstvennoe uchebno-pedagogicheskoe izdatel`stvo Narkomprosa RSFSR Publ., 1939. 296 r. (in Russian)

24. Beglov I.A., Rustamyan V.V., Verbitskiy R.A. Primeneniye segmentov poverkhnosti kvazivrashcheniya v arkhitekturnom prototipirovanii [Application of quasi-rotation surface segments in architectural prototyping]. Fizicheskiy zhurnal: seriya konferentsiy [Journal of Physics: Conference Series]. 15, Virtual, Online, 09-11 noyabrya 2021. Virtual, Online, 2022. P. 012002. DOI:https://doi.org/10.1088/1742-6596/2182/1/012002. (in Russian)

25. Shizawa Masahiko Discrete invertible affine transformations Shizawa Masahiko 134 - 139 V.2., 1990. -https://doi.org/10.1109/ICPR.1990.119343.

26. Zheng Weiwei Two-Step Affine Transformation Prediction for Visual Object Tracking Zheng Weiwei, Yu Huimin, Lu Zhaohui IEEE Access. PP. 1-1, 2021.https://doi.org/10.1109/ACCESS.2021.3056469.

Login or Create
* Forgot password?