Samara State Technical University
Samara, Samara, Russian Federation
UDK 51 Математика
The field theory is widely represented in spherical and cylindrical coordinate systems, since the mathematical apparatus of these coordinate systems is well studied. Field sources with more complex structures require new approaches to their study. The purpose of this study is to determine the correct coordination of space by normal conic coordinates. This is necessary in subsequent studies, the task of which will be to simplify the expressions for the characteristics of the field by introducing a special coordination of space, which reflect the shape of the source and/or sink of the field. For example, a field with a rectilinear source is more convenient to refer to cylindrical coordinates, and a field with a point source - to spherical coordinates. Basically, the use of field theory in the study of physical processes by methods of applied geometry is limited to two classical curvilinear systems, although their presentation in arbitrary curvilinear coordinates is known. We will distinguish between global and local coordinate systems. The global system, as well as the coordinates of a point in this system, will be denoted by x, y, z. She is unchanging. The local system, as well as the coordinates of a point in this system, will be denoted by t, u, v. Local system variable. At each point in space belonging to the area of existence of the system, the local coordinate system is defined
conic coordinates, space coordination, field theory
1. Berdynsky V.A., Rybnikov I.P. Ob ortogonal'nykh krivolineynykh sistemakh koordinat v prostranstvakh postoyannoy krivizny [On orthogonal curvilinear coordinate systems in spaces of constant curvature]. Sibirskiy matematicheskiy zhurnal. Sibirskoye otdeleniye RAN, Institut matematiki im. S.L. Soboleva SO RAN [Siberian Mathematical Journal. Siberian Department of the Russian Academy of Sciences, Institute of Mathematics named S.L. Sobolev SB RAS]. 2011, V. 52, I. 3, pp. 502-511. (in Russian)
2. Bulakh E.G., Schuman V.N. Osnovy vektornogo analiza i teorii polya [Fundamentals of vector analysis and field theory]. Kiev, Naukova Dumka Publ., 1998. 300 p. (in Russian)
3. Girsh A.G. Okruzhnosti na kompleksnoy ploskosti [Circles in the complex plane]. Geometriya i grafika. [Geometry and graphics]. 2020, V. 8, I. 4, pp. 3-12. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-3-12. (in Russian)
4. Guzev M.A., Chengzhi Q.I. Vyvod uravneniy gradiyentnoy teorii v krivolineynykh koordinatakh [Derivation of gradient theory equations in curvilinear coordinates]. Dal'nevostochnyy matematicheskiy zhurnal. Institut prikladnoy matematiki DVO RAN [Far Eastern Mathematical Journal. Institute of Applied Mathematics of the Far Eastern Federal District of the Russian Academy of Sciences]. 2013, V. 13, I. 1, pp. 35-42. (in Russian)
5. Efremov A.V., Vereshchagina T.A., Kadykova N.S., Rustamyan V.V. Prostranstvennyye geometricheskiye yacheyki - kvazimnogogranniki [Spatial geometric sells - quasipolyhedra]. Geometriya i grafika. [Geometry and graphics]. 2021, V. 9, I. 3, pp. 30-38. DOI:https://doi.org/10.12737/2308-4898-2021-9-3-30-38. (in Russian)
6. Ivashchenko A.V., Vavanov D.A. Obshchiy analiz formy linii peresecheniya dvukh odnotipnykh poverkhnostey vtorogo poryadka [General analysis of the shape of the line of intersection of two surfaces of the same type of the second order]. Geometriya i grafika. [Geometry and graphics]. 2020, V. 6, I. 4, pp. 24-34. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-24-34. (in Russian)
7. Konopatsky E. V., Bezditny A. A. Tochechnyye instrumenty geometricheskogo modelirovaniya, invariantnyye otnositel'no parallel'nogo proyetsirovaniya [Point geometric modeling tools invariant under parallel projection]. Geometriya i grafika. [Geometry and graphics]. 2018, V. 9, I. 4, pp. 11-21. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-11-21. (in Russian)
8. Maly V.V., Maly D.V., Shchelokov V.S. Differentsial'nyye operatsii v krivolineynykh sistemakh koordinat [Differential operations in curvilinear coordinate systems]. Vestnik Luganskogo gosudarstvennogo universiteta imeni Vladimira Dalya. Luganskiy gosudarstvennyy universitet im. V. Dalya [Bulletin of the Luhansk State University named after Vladimir Dalya. Luhansk State University named after V. Dalya]. 2021, I. 1(43), pp. 245-253. (in Russian)
9. Mykhailova O.V., Serzhantova M.M. Ob ispol'zovanii krivolineynykh koordinat v vektornom analize [On the use of curvilinear coordinates in vector analysis]. Inzhenernyy vestnik. Akademiya inzhenernykh nauk im. A.M. Prokhorova [Engineering Bulletin. Academy of Engineering Sciences named A.M. Prokhorova]. 2015, I. 11, pp.20. (in Russian)
10. Nikolaev M.O., Nikolaeva M.O., Nikolaev, A.V. Kratnyye integraly v krivolineynykh sistemakh koordinat [Multiple integrals in curvilinear coordinate systems]. Vremya nauki IP Kuzmin V.S [Science time. IP Kuzmin V.S]. 2021, I. 5, pp. 54-58. (in Russian)
11. Nesnov D.V. Normal'nyye konicheskiye koordinaty [Normal conical coordinates]. Mezhdunarodnaya zaochnaya nauchno-prakticheskaya konferentsiya «Nauka i obrazovaniye v zhizni sovremennogo obshchestva» [International Correspondence Scientific and Practical Conference "Science and Education in the Life of Modern Society"]. 2016, pp. 189-192. (in Russian)
12. Nesnov D.V. Elementy teorii polya v konicheskikh koordinatakh [Elements of field theory in conic coordinates]. Stroitel'stvo i tekhnogennaya bezopasnost'. FGAOU VO «KFU im. V.I. Vernadskogo» [Construction and technogenic safety. FGAOU VO "KFU im. IN AND. Vernadsky"]. 2023, V. 28 (80), pp. 45-52. (in Russian)
13. Neustroev R.N. Predstavleniye klassicheskikh ortogonal'nykh krivolineynykh sistem koordinat na ploskosti kvadratichnymi formami i kharakterizatsiya ellipticheskikh koordinat [Representation of classic orthogonal curvilinear coordinate systems on the plane by quadratic forms and characterization of elliptic coordinates]. Vestnik nauchnykh konferentsiy. OOO "Konsaltingovaya kompaniya Yukom" [Journal of Scientific Conferences. LLC "Consulting Company Yukom"]. 2015, I. 3-2(3), pp. 104-105. (in Russian)
14. Sal’kov N.A. Obshchiye printsipy zadaniya lineychatykh poverkhnostey. Chast' 2 [General principles for defining ruled surfaces. Part 2] Geometriya i grafika. [Geometry and graphics]. 2019, V. 7, I. 1, pp. 14-27. DOI:https://doi.org/10.12737/article_5c9201eb1c5f06.47425839. (in Russian)
15. Sal’kov N.A. Formirovaniye poverkhnostey pri kineticheskom otobrazhenii [Formation of surfaces in kinetic mapping]. Geometriya i grafika. [Geometry and graphics]. 2018, V. 6, I. 1, pp. 20-33. DOI:https://doi.org/10.12737/article_5ad094a0380725.32164760. (in Russian)
16. Smirnov S.S. Parametricheskiy metod avtomaticheskogo zadaniya koordinat slozhnoy krivolineynoy poverkhnosti [Parametric method of automated assignment of coordinates of a complex curved surface]. Gruzovik. OOO "Izdatel'stvo "Innovatsionnoye mashinostroyeniye". Truck. LLC "Publishing house "Innovative engineering". 2005, V. 5, pp. 35-37. (in Russian)
17. Stepanov M.E. Metod krivolineynykh koordinat v komp'yuternoy geometrii [Method of curvilinear coordinates in computer geometry]. Modelirovaniye i analiz dannykh. Moskovskiy gosudarstvennyy psikhologo-pedagogicheskiy universitet. [Modeling and data analysis. Moscow State Psychological and Pedagogical University]. 2013, I. 1, pp. 157-192. (in Russian)
18. P. Francesco, P. Mathieu, D. Senechal, Conformal field theory. Springer-Verlag, New York. 2012.
19. Landau L.D., Lifshitz E.M., The classical theory of fields. Elsevier, New York, 2013.
20. Pidgorny O.L. From the Theory of the Maps to Geometrical Modeling of Objects, Phenomena and Processes. The Applied Geometry and Engineering Graphic. Kiev. 2002, V. 70, pp. 32-38.
21. Nikitin M.N., J. of Physics: Conf. series 891, 12039 (2017), DOI:https://doi.org/10.1088/1742- 6596/891/1/012039.
22. Nesnov D.V. Field theory in normal toroidal coordinates, MATEC Web of Conferences, Vol. 193, 003022 - 2018.
23. Tsinaeva A.A., Nikitin M.N. Procedia Eng. 150, 2340-2344 (2016), DOI:https://doi.org/10.1016/j.proeng.2016.07.321
24. Quartieri J., Sirignano L., Guarnaccia C., WSEAS Int. conf. (EMESEG'08), Heraklion, Greece, 2008.