Ornamental compositions open up significant opportunities for the formation of algorithmic skills among bachelors of fine and applied arts. Geometric ornament is a good training material for the construction and analysis of digital art models with a flexible level of complexity. Descriptive geometry is considered as an applied tool for analyzing and creating an ornamental composition. The analysis of the ornament allows you to read architectural and artistic forms more professionally. The integration of descriptive geometry and computer graphics disciplines takes the content to a qualitatively new level. Geometric constructions in ornamental compositions are functionally convenient for creating digital models when studying vector graphic editors. The article reveals the problem of the formation of algorithmic skills among future bachelors of art as an important component of algorithmic culture and computational thinking. The descriptive geometry language and digital tools of vector computer graphics were chosen as the language of the algorithm description in solving ornamental compositions. The article presents a generalized algorithm for constructing a digital model of ornamental compositions, consisting of analytical, search, constructive, reproductive, reflexive, evaluative stages, including action and auxiliary questions for finding a solution to a graphical problem. An example of a particular algorithm for constructing the rose of Amiens Cathedral, performed by a student in the framework of studying the discipline "Modern Information Technologies", is given. The search for solutions at each stage is carried out with the help of auxiliary questions of the generalized algorithm. Special attention is paid to such stages of the algorithm as reflection of the finished digital model to investigate the possibility of using it in a given material.
ornamental composition, geometric constructions, descriptive geometry, computer graphics, computational thinking, algorithmic skills, digital modeling
1. Baidak V.A. Teoriya i metodika obucheniya matematike: nauka, uchebnaya distsiplina [Theory and methodology of teaching mathematics: science, academic discipline]. Omsk, OMGPU Publ., 2008, 263 p. (in Russian)
2. Butkevich L.M. Istoriya ornamenta [Ornament history] Moscow, VLADOS Publ., 2017, 267 p. (in Russian)
3. Verhoturova E.V., Ivaschenko G.A. Prichinno-sledstvennyi analiz problem geometro-graficheskoi podgotovki obuchayushchikhsya tekhnicheskogo vuza [Cause and effect diagram of the problems of geometric and graphic training of students at a technical university]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 2, pp. 60-69. (in Russian)
4. Voronina L.V., Utyumova E.A. Teoriya i tekhnologii matematicheskogo obrazovaniya detei doshkol'nogo vozrasta [Theory and technologies of mathematical education of preschool children]. Ekaterinburg, URGPU Publ., 2017, 289 p. (in Russian)
5. Gavrilova I.V. Trit-metodika resheniya algoritmicheskikh zadach na urokakh informatiki v osnovnoi shkole. Kand. Diss. [Trit-method for solving algorithmic problems in informatics lessons in primary school. Cand. Diss.]. Krasnoyarsk, 2019. 163 p. (in Russian)
6. Gazeikina A.I. Obuchenie shkol'nikov 5-7-kh klassov ob"ektno-orientirovannomu podkhodu k sozdaniyu i ispol'zovaniyu sredstv informatsionnykh tekhnologii Kand. Diss. [Teaching students of grades 5-7 an object-oriented approach to the creation and use of information technology tools Cand. Diss.]. Ekaterinburg, 2004. 164 p. (in Russian)
7. Dalinger V.A. Geometriya: planimetricheskie zadachi na postroenie: uchebnoe posobie dlya srednego professional'nogo obrazovaniya [Geometry: planimetric tasks for construction : a textbook for secondary vocational education]. Moscow, Yurait Publ., 2023, 155 p. (in Russian)
8. Ershov A.P. Programmirovanie - vtoraya gramotnost [Programming, the Second Literacy]. Problemy informatiki [Problems of Informatics]. 2015, V. 29, I. 4, pp. 71-85. (in Russian)
9. Ershov A.P., Monakhov V.M., Vitin'sh M.V. Izuchenie osnov informatiki i vychislitel'noi tekhniki [Studying the basics of computer science and computer technology]. V. 2. Moscow, Prosveshchenie Publ., 1986, 207 p. (in Russian)
10. Kalitina V.V. Formirovanie programmno-algoritmicheskoi kompetentnosti bakalavrov informatsionnykh napravlenii pri obuchenii programmirovaniyu. Kand. Diss. [Formation of software and algorithmic competence of bachelors of information directions in teaching programming. Cand. Diss.]. Krasnoyarsk, 2015. 163 p. (in Russian)
11. Karataeva N.G. Didakticheskie osobennosti primeneniya nestandartnykh uchebnykh zadanii dlya formirovaniya osnov algoritmicheskoi kul'tury uchashchikhsya. Kand. Diss. [Didactic features of the application of non-standard educational tasks for the formation of the foundations of algorithmic culture in students. Cand. Diss.]. Rostov-na-Donu, 2011. 207 p. (in Russian)
12. Kineva L.A. Istoriya i teoriya ornamenta [Nistory and theory of ornament]. Ekaterinburg, URFU Publ., 2018, 131 p. (in Russian)
13. Kolmogorov A.N. Matematika nauka i professiya [Mathematics science and profession]. Moscow, Nauka Publ., 1988. 288 p. (in Russian)
14. Kukhta M.S., Bushar K. Urovni stilizatsii i ikh znachenie v formirovanii obrazov dizaina [Levels of stylization and their importance in the formation of the design images] Akademicheskii vestnik UralNIIproekt RAASN [Akademicheskij vestnik uralniiproekt raasn]. 2016, V. 31, I. 4, pp. 91-95. (in Russian)
15. Lebedeva T.N. Formirovanie algoritmicheskogo myshleniya shkol'nikov v protsesse obucheniya rekursivnym algoritmam v profil'nykh klassakh srednei obshcheobrazovatel'noi shkoly. Kand. Diss. [Formation of algorithmic thinking of schoolchildren in the process of learning recursive algorithms in specialized classes of secondary schools. Cand. Diss.]. Ekaterinburg, 2005. 219 p. (in Russian)
16. Markov A.A., Nagornyi N.M. Teoriya algorifmov [Theory of algorithms]. Moscow, Nauka Publ., 1984. 432 p. (in Russian)
17. Mukharkina A.A. Vozmozhnosti germenevticheskogo algoritma dlya formirovaniya tsifrovoi kompetentsii bakalavrov izobrazitel'nogo i prikladnykh vidov iskusstv [The possibilities of the hermeneutical algorithm for the formation of digital competence of bachelors of fine and applied arts] Pedagogika iskusstva [Pedagogy of Art]. 2022, I. 3, pp. 142-156. (in Russian)
18. Mukharkina A.A. Germenevticheskii algoritm kak pedagogicheskii instrument formirovaniya tsifrovoi kompetentsii bakalavrov iskusstv [Hermeneutical algorithm as a pedagogical tool for the formation of digital competence of bachelor of arts] / Pedagogika iskusstva [Pedagogy of Art]. 2022, I. 1, pp. 71-79. (in Russian)
19. Mukharkina A.A. Podgotovka bakalavrov izobrazitel'nogo i prikladnykh vidov iskusstv k tsifrovomu modelirovaniyu khudozhestvennykh obrazov [Training bachelors of graphic and applied kinds of art to digital modelling of artistic images] Izvestiya Volgogradskogo gosudarstvennogo pedagogicheskogo universiteta. 2021, V. 163, I. 10, pp. 101-111. (in Russian)
20. Popova V.V. Formirovanie algoritmicheskoi kompetentnosti studentov - budushchikh IKT-spetsialistov v sisteme srednego professional'nogo obrazovaniya v protsesse obucheniya matematike. Kand. Diss. [Formation of algorithmic competence in students - future IT-specialists in the system of secondary vocational education in the process of learning mathematics. Cand. Diss.]. Krasnoyarsk, 2019. 233 p. (in Russian)
21. Boykov A.A., Egiazaryan K.T., Efremov A.V., Kadykova N.S. Problemy geometro-graficheskoi podgotovki studentov vuzov [Problems of geometric-graphic training of university students] Geometriya i grafika [Geometry and graphics]. 2023, V. 11, I. 1, pp. 4-22. DOI:https://doi.org/10.12737/2308-4898-2023-11-1-4-22 (in Russian)
22. Sal'kov N.A., Kadykova N.S. Fenomen prisutstviya nachertatel'noi geometrii v drugikh uchebnykh distsiplinakh [The phenomenon of descriptive geometry existence in other student courses] Geometriya i grafika [Geometry and graphics]. 2020, V. 8, I. 4, pp. 61-73. DOIhttps://doi.org/10.12737/2308-4898-2021-8-4-61-73. (in Russian)
23. Sal'kov N.A. Nachertatel'naya geometriya - baza dlya komp'yuternoj grafiki [Descriptive geometry - the basis for computer graphics]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 2, pp. 37-47. DOI:https://doi.org/10.12737/19832. (in Russian)
24. Simakova YU.A. Podkhody k primeneniyu ornamenta v dizaine [Approaches to ornament application in design] Akademicheskii vestnik UralNIIproekt RAASN [Akademicheskij vestnik uralniiproekt raasn]. 2013, I. 4, pp. 96-100. (in Russian)
25. Telepova T.P. Pedagogicheskii kontrol' kak sredstvo formirovaniya algoritmicheskikh umenii samostoyatel'noi raboty budushchikh pedagogov professional'nogo obucheniya Kand. Diss. [Pedagogical control as a means of forming algorithmic skills of independent work of future teachers of vocational training. Cand. Diss.]. Ekaterinburg, 2019. 242 p. (in Russian)
26. Lapchik M.P., Semakin I.G., Khenner E.K., Ragulina M.I. Teoriya i metodika obucheniya informatike [Theory and methodology of learning informatics]. Moscow, Akademiya Publ., 2008. 592 p. (in Russian)
27. Turlyun L.N., Frantseva N.V. Komp'yuternye tekhnologii v proektirovanii ornamenta [Somputer techologies in designing the ornament]. Kul'turnoe nasledie Sibiri [Cultural heritage of Siberia]. 2018, V. 25, I. 1, pp. 108-114. (in Russian)
28. Utyumova E.A. Formirovanie algoritmicheskikh umenii u detei doshkol'nogo vozrasta v protsesse obucheniya matematike. Kand. Diss. [Algorithmic skills formation of preschool children when teaching mathematics. Cand. Diss.]. Ekaterinburg, 2018. 192 p. (in Russian)
29. Stolyar A.A. Formirovanie ehlementarnykh matematicheskikh predstavlenii u doshkol'nikov [Formation of elementary mathematical concepts in preschoolers.]. Moscow, Prosveshchenie Publ., 1988. 303 p.(in Russian)
30. Khenner E. K. Vychislitel'noe myshlenie [Computational thinking]. Obrazovanie i nauka [The Education and science journal.]. 2016. V. 131, I. 2. pp. 18-33. DOI:https://doi.org/10.17853/1994-5639-2016-2-18-33. (in Russian)
31. Chukomin P.P. Izobrazhenie geometricheskogo ornamenta. Available at: https://goskatalog.ru/portal/#/collections? id=37690826 (accessed 11.03.2023)
32. Chukomin P.P. Izobrazhenie ornamenta "Goticheskii stil". Available at: https://goskatalog.ru/portal/#/collections?id=31169142 (accessed 11.03.2023)
33. Shapiro S.I. Ot algoritmov - k suzhdeniyam [From algorithms to judgments]. Moscow, Sovetskoe radio Publ., 1973. 288 p. (in Russian)
34. Ehl'konin D.B. Izbrannye psikhologicheskie trudy [Selected psychological works]. Moscow, Pedagogika Publ., 1989. 560 p. (in Russian)
35. Yazvinskaya S.D. Pedagogicheskie usloviya razvitiya algoritmicheskikh sposobnostei detei starshego doshkol'nogo vozrasta v protsesse poznaniya kategorii vremeni. Kand. Diss. [Pedagogical conditions for the development of algorithmic abilities of older preschool children in the process of cognition of the category of time. Cand. Diss.]. Stavropol', 2009. 202 p. (in Russian)
36. Billings R.W. The infinity of geometric design exemplified Edinburgh and London, William Blackwood & Sons Publ., 1849. 112 p. Available at: https://archive.org/details/infinityofgeomet00bill/page/41/mode/1up (accessed 11.03.2023)
37. Somputational thinking in contexts without programming a computer National Academies of Sciences, Engineering, and Medicine. 2010. Report of a Workshop on the Scope and Nature of Computational Thinking. Washington, DC: The National Academies Press. https://doi.org/10.17226/12840.
38. Wing J. Computational Thinking. Communications of the ACM. 2006, March. V. 49. I. 3. pp. 33-35. Available at: https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf (accessed 11.03.2023).