APPLICATION OF THE KOCH CURVE TO INCREASE THE STRENGTH OF AIRCRAFT PARTS
Abstract and keywords
Abstract (English):
Fractals are formed by iterative repetition of the construction algorithm at different scale levels. The use of such an algorithm, which increases the strength properties during the construction of the structure, will strengthen these properties with each iteration. The Koch curve principle is applied in the article. Replacing the compressible plate with four new ones connected at angles increases the stability of the structure. This article theoretically confirms the increase in the stability of the Koch plate both at the level of individual plates and at the level of fractal segments and the structure as a whole (general stability). Regularities of stability changes at different scale levels with an increase in the number of iterations are established. A comparison of variants of Koch plates with different similarity coefficients is also carried out. The theoretical results were confirmed using simulations in the CAE system Solid-Works - a finite element analysis of the stability of computer models of the Koch plates was carried out. The graphs constructed from the obtained data correspond to the theoretical predictions of the dependence of stability on the geometric parameters of the Koch plate. As an illustration of the applicability of this kind of fractal structures in the design of aircraft parts, a fractal modification of a typical part, the slat rail, has been developed. The proposed modification of the rail was also investigated using computer simulations. A comparison of the strength properties of a standard-shaped part and its analogue with a fractal structure included showed the advantage of the latter: with certain values of mass and loading scheme, the fractal modification showed twice as much stability. This reduces the weight of the standard slat rail by 5% without loss of strength properties.

Keywords:
fractals, Koch curve, compressive load, loss of stability
References

1. Alyamovskij A.A. Inzhenernyj analiz metodom konechnyh elementov [Engineering analysis by the finite element method]. SolidWorks/COSMOSWorks. Litres. 2022, rp. 216. (in Russian)

2. Astahov M.F., Karavaev A.V., Makarov S.YA., Suzdal'cev YA.YA. Spravochnaya kniga po raschetu samoleta na prochnost' [Reference book on the calculation of the strength of the aircraft] Oborongiz. 1954, pp. 411-412. (in Russian)

3. Vardanyan G.S. Soprotivlenie materialov s osnovami teorii uprugosti i plastichnosti [Resistance of materials with the basics of the theory of elasticity and plasticity]. Moscow, Izdatel'stvo ASV Publ., 2011, 566 p. (in Russian)

4. Vyshnepol'skij V.I., Zavarihina E.V, Egiazaryan K.T. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. CHast' 5: geometricheskie mesta tochek, ravnoudalennyh ot sfe-ry i ploskosti [Geometric locations of points equidistant from two given geometric shapes. Part 5: Geometric locations of points equidistant from the sphere and plane] Geometriya i grafika [Geometry and graphics]. 2022, I. 4, pp. 22-34. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-22-34. (in Russian)

5. Endogur A.I., Vajnberg M.V., Ierusalimskij. K.M. Sotovye konstrukcii: Vybor parametrov i proektirovanie [Cellular structures: Parameter selection and design]. Moscow, Mashinostroenie Publ., 1986. 198 p. (in Russian)

6. Efremov A.V., Vereshchagina T.A., Kadykova N.S., Rustamyan V.V. Prostranstvennye geometricheskie yachejki - kvazimnogogranniki [Spatial geometric cells - quasi-monogrammers] Geometriya i grafika [Geometry and graphics]. 2021, I. 3, pp. 30-38. DOI:https://doi.org/10.12737/2308-4898-2021-9-3-30-38. (in Russian)

7. ZHiharev L. A. Obzor geometricheskih sposobov povysheniya udel'noj prochnosti kon-strukcij: topologicheskaya optimizaciya i fraktal'nye struktury [Overview of geometric ways to increase the specific strength of structures: topological optimization and fractal structures]. Geometriya i grafika [Geometry and graphics]. 2021, V. 9, I. 4, pp. 46-62. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-46-62. (in Russian)

8. ZHiharev L. A. Fraktal'nye grafiki effektivnosti optimizacii topologii v reshenii problemy zavisimosti prochnosti ot setki [Fractal graphs of topology optimization efficiency in solving the problem of strength dependence on the grid] Geometriya i grafika [Geometry and graphics]. 2020, V. 8, I. 3, pp. 25-35. DOI:https://doi.org/10.12737/2308-4898-2020-25-35. (in Russian)

9. ZHiharev L. A. Fraktal'nye razmernosti [Fractal dimensions] Geomet-riya i grafika [Geometry and graphics]. 2018, V. 6, I. 3, pp. 33-48. DOI:https://doi.org/10.12737/article_5bc45918192362.77856682. (in Russian)

10. Zav'yalova O.B., Kulikov V.V. Ocenka vliyaniya plotnosti setki konechnyh elementov na tochnost' rascheta konstrukcij zdaniya v programmnom komplekse «Monomah-SAPR» [Evaluation of the effect of the finite element grid density on the accuracy of the calculation of building structures in the Monomakh-CAD software package] Materialy VII Mezhdunarodnogo nauchnogo foruma molodyh uchenyh, innovatorov, studentov. Pod obshch. red. D. P. Anufrieva. [Materials of the VII International Scientific Forum of Young Scientists, Innovators, students. Under the general editorship of D. P. Anufriev.]. 2018, pp. 73-79. (in Russian)

11. Kalinin A. V., Hvalin A.L. Primenenie metoda konechnyh elementov v sovremennyh sistemah avtomatizirovannogo proektirovaniya [Application of the finite element method in modern computer-aided design systems] Geteromagnitnaya mikroelektronika [Heteromagnetic microelectronics]. 2019, I. 26, pp. 41-51. (in Russian)

12. Kolpakov A. M. Issledovanie trekhslojnyh nesushchih poverhnostej aviacionnyh konstrukcij s vozmozhnost'yu upravleniya pogranichnym sloem. Sand, Diss. [Investigation of three-layer bearing surfaces of aircraft structures with the ability to control the boundary layer. PHD. Diss.]: Moscow, 2020. 166 p. (in Russian)

13. Leparov M. N. O geometrii, eshche odin raz [About geometry, one more time] Geomet-riya i grafika [Geometry and graphics]. 2022, I. 1, pp. 3-13. DOI:https://doi.org/10.12737/2308-4898-2022-10-1-3-13. (in Russian)

14. Lyahov L.N. Vychislenie fraktal'noj razmernosti tipa krivaya Koha [Calculation of the fractal dimension of the Koch curve type] «Sovremennye problemy matematiki i fiziki», materialy mezhdunarodnoj nauchnoj konferencii [ "Modern problems of mathematics and physics", proceedings of the international scientific conference.] Sterlitamak. BBK 22.161, 2021, pp. 193-196. (in Russian)

15. Oreshko E.I., Erasov V.S., Lucenko A.N. Osobennosti raschetov ustojchivosti sterzhnej i plastin [Features of stability calculations of rods and plates] Aviacionnye materialy i tekhnologii [Aviation materials and technologies.]. 2016, I. 4, pp. 74-79. DOI:https://doi.org/10.18577/2071-9140-2016-0-4-74-79. (in Russian)

16. Orlov P. I. Osnovy konstruirovaniya: sprav.-metod. posobie [Fundamentals of design: reference.- method. stipend] pod red. P.N. Uchaeva. M.: Mashinostroenie [edited by P.N. Uchaeva. M.: Mechanical engineering]. 1988, 623 P. (in Russian)

17. Slivinskij V. I., Tkachenko G.V., Slivinskij M.V. Effektivnost' primeneniya so-tovyh konstrukcij v letatel'nyh apparatah [The effectiveness of the use of cellular structures in aircraft] Sibirskij aerokosmicheskij zhurnal [Siberian Aerospace Magazine]. 2005, I. 3, pp. 169-173. (in Russian)

18. Suncov O. S. ZHiharev L.A. Issledovanie otrazheniya ot krivolinejnyh zerkal na ploskosti v programme Wolfram Mathematica [Investigation of reflection from curved mirrors on a plane in the Wolfram Mathematica program]. Geomet-riya i grafika [Geometry and graphics]. 2021, V. 2, pp. 29-45. DOI:https://doi.org/10.12737/2308-4898-2021-9-2-29-45. (in Russian)

19. CHernyshov D. N. Grishchenko O.S., Grigor'ev A.V. Ispol'zovanie metoda konechnyh elementov dlya fizicheskih raschetov v SAPR [Using the finite element method for physical calculations in CAD] Sovremennye informacionnye tekhnologii v obrazovanii i nauchnyh issledovaniyah (SITONI-2019) [Modern Information Technologies in Education and Scientific Research (SITONI-2019)]. 2019, pp. 347-352. (in Russian)

20. SHabolin M. L. Primenenie raschyotov metodom konechnyh elementov i topologiche-skoj optimizacii pri proektirovanii avtomobilya klassa «Formula student» [Application of calculations by the finite element method and topological optimization in the design of a Formula Student car] Sbornik trudov 4-go Vserossijskogo foruma «Studencheskie inzhenernye proekty». Moscow: MADI [Proceedings of the 4th All-Russian Forum "Student Engineering Projects"]. Moscow MADI Publ., 2016, pp. 64-71. (in Russian)

21. Aage N., Erik A., Boyan S. L., Ole S. Giga-voxel computational morphogenesis for structural design // Nature. 2017, V. 550, I. 7674, pp. 84-86. DOIhttps://doi.org/10.1038/nature23911.

22. Beglov I. A. Computer geometric modeling of quasi-rotation surfaces //Journal of Physics: Conference Series. IOP Publishing. 2021, V. 1901, I. 1, pp. 12-57.

23. Beglov I. A. Nn-digit interrelations between the sets within the R 2 plane generated by quasi-rotation of R 3 space //Journal of Physics: Conference Series. IOP Publishing. 2020, V. 1546, I. 1, pp. 12-33.

24. Branch B., Ionita A., Patterson B.M., Schmalzer A., Clements B., Mueller A., Dattelbaum D. M. A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures //Polymer. 2019, V. 160, pp. 325-337. DOI:https://doi.org/10.1016/j.polymer.2018.10.074

25. Dattelbaum D. M. et al. Shockwave dissipation by interface-dominated porous structures //AIP Advances. 2020, V. 10, I. 7, pp. 075016 1-6. DOI:https://doi.org/10.1063/5.0015179.

26. Rayneau-Kirkhope D. et al. Hierarchical space frames for high mechanical efficiency: Fabrication and mechanical testing //Mechanics Research Communications. 2012, V. 46, pp. 41-46. DOIhttps://doi.org/10.1016/j.mechrescom.2012.06.011.

27. Rayneau-Kirkhope D., Mao Y., Farr R. Ultralight fractal structures from hollow tubes //Physical review letters. 2012, V. 109, I. 20, pp. 204-301. DOIhttps://doi.org/10.1103/PhysRevLett.109.204301.

28. Rian I. M. FracShell: From Fractal Surface to a Lattice Shell Structure //Digital Wood Design. - Springer, Cham. 2019, pp. 1459-1479. DOIhttps://doi.org/10.1007/978-3-030-03676-8_59.

29. Sajadi S. M, Woellner C.F., Ramesh P., Eichmann S.L., Sun Q., Boul P.J., Thaemlitz C.J., Rahman M.M., Baughman R.H., Galvão D.S., Tiwary C.S., Ajayan P.M. 3D printed tubulanes as lightweight hypervelocity impact resistant structures /Small. 2019, V. 15, I. 52, pp. 19-47. DOI:https://doi.org/10.1002/smll.201904747

30. Viccica M., Galati M., Calignano F., Iuliano L. Design, additive manufacturing, and characterisation of a three-dimensional cross-based fractal structure for shock absorption // Thin-Walled Structures. 2022, V. 181, pp. 106-110.

31. Wang J. et al. Crashworthiness behavior of Koch fractal structures /Materials & Design. 2018, V. 144, pp. 229-244. DOIhttps://doi.org/10.1016/j.matdes.2018.02.035.

32. Xia L., Xia Q., Huang X., Xie Y. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review //Archives of Computational Methods in Engineering. 2018, V. 25, I. 2, pp. 437-478. DOIhttps://doi.org/10.1007/s11831-016-9203-2.

33. Zhikharev L. A. A Sierpiński 3D-Fractals in Construction. An Alternative to Topological Optimization? //Proceedings of the 5th International Conference on Construction, Architecture and Technosphere Safety: ICCATS 2021. - Cham: Springer International Publishing. 2022, pp. 273-284.

34. Zhikharev L. A. A Sierpiński triangle geometric algorithm for generating stronger structures //Journal of Physics: Conference Series. - IOP Publishing. 2021, V. 1901, I. 1, pp. 1-10. DOI:https://doi.org/10.1088/1742-6596/1901/1/012066.

35. Zhikharev L. A. Grid Based on the Sierpinski fractal and an fssessment of the prospects for its application in aircraft parts // Proceedings of the 31st International Conference on Computer Graphics and Vision (GraphiCon 2021). 2021, pp. 745-753.

Login or Create
* Forgot password?