BUILDING A SPHERE FROM IMAGINARY POINTS
Abstract and keywords
Abstract (English):
Euclidean spaces of various dimensions do not contain imaginary images and objects by definition, but are inextricably linked with them through special cases, and this leads to the need to expand the field in geometry into the region of imaginary values [1, 19, 26]. Such an extension, i.e. adding to the field of real coordinates spaces of different dimensions, the field of imaginary coordinates leads to different variants of spaces of different dimensions, depending on the chosen axiomatics. Earlier in a number of articles, examples of solving some actual problems of geometry using imaginary geometric images and objects were shown [4, 5, 6, 13, 21, 22, 29]. The article provides constructions for constructing a sphere from four predetermined points, of which one pair or both pairs of points can be imaginary complex conjugate. The construction is carried out on combined diagrams by the methods of descriptive geometry by analogy with the well-known problem of constructing a sphere from four real points. The construction of a sphere is based on seven auxiliary constructions for constructing a circle from points that can be imaginary conjugates. Both 3D problems of constructing spheres for given points and methods of 2D construction problems for determining the required imaginary points are considered. A method for calculating the parameters of the obtained sphere is described. The application of the method to other problems of descriptive geometry, for example, to the problems of finding geometric places of points, is considered. equidistant from two given surfaces. Recently, this issue has been intensively studied, for example, in the works [5, 6].

Keywords:
imaginary conjugate points, carrier of imaginary points, tangent lines, isotropic lines, intersecting lines, actual circle, imaginary circle, circle of Thales (based on the diameter),center line, radical axis, parallel planes, actual sphere, imaginary sphere, sphere
References

1. Aleksandrov P.S. Lektsii po analiticheskoy geometrii [Lectures on analytic geometry]. Moscow: Nauka Publ., 1968. 382 p. (in Russian)

2. Argunov B.I., Balk M.B. Geometricheskiye postroyeniya na ploskosti [Geometric constructions on the plane]. Moscow: Prosveshcheniye Publ., 1957. 267 p. (in Russian)

3. Balk M.B., Balk G.D., Polukhin A.A. Real'nyye primeneniya mnimykh chisel [Real applications of imaginary numbers]. Kiyev, Radyans'ka shkola Publ., 1988. 255 p. (in Russian)

4. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primene-niyem mnimykh geometricheskikh obrazov [Algorithmic complex for solving problems with quadrics using imaginary geometric images]. Geometriya i grafika [Geometry and graphics]. 2020, V. 8, I. 2, pp. 3-32. DOI:https://doi.org/10.12737/2308-4898-2020-3-32. (in Russian)

5. Vyshnepol'skij V.I., Zavarihina E.V., Pekh D.S. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. chast' 4: geometricheskie mesta tochek, ravnoudalennyh ot dvuh sfer [Geometric points of points equidistant from two given geometric shapes. Part 4: geometric points of points equidistant from two spheres]. Geometriya i grafika [Geometry and Graphics]. 2021, V. 9, I. 3, pp. 12-29. DOI:https://doi.org/10.12737/2308-4898-2021-9-3-12-29. (in Russian)

6. Vyshnepol'skij V.I., Zavarihina E.V., Egiazaryan K.T. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. chast' 5: geometricheskie mesta tochek, ravnoudalennyh ot sfery i ploskosti [Geometric locus of points equidistant from two given geometric figures. part 5: locus of points equidistant from sphere and plane]. Geometriya i grafika [Geometry and Graphics]. 2021, V. 9, I. 4, pp. 22-34. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-22-34. (in Russian)

7. Girsh A.G. Kompleksnaya geometriya - evklidova i psevdoevklidova [Complex geometry - Euclidean and pseudo-Euclidean]. Moscow: IPTs «Maska» Publ., 2013. 216 p. (in Russian)

8. Girsh A.G. Mnimosti v geometrii [Imaginations in geometry]. Geometriya i grafika [Geometry and Graphic]. 2014, V. 2, I. 2, pp. 3-8. DOI:https://doi.org/10.12737/5583. (in Russian)

9. Girsh A.G. Naglyadnaya mnimaya geometriya [Visual imaginary geometry]. Moscow: IPTs “Maska” Publ., 2008. 216 p. (in Russian)

10. Girsch A.G. Novye zadachi nachertatel'noj geometrii. Rrodolzheniye [New Descriptive Geometry Problems. Sontinuation]. Geometriya i grafika [Geometry and graphics]. 2021, V. 9, I. 4, pp. 3-10. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-3-10. (in Russian)

11. Girsh A.G. Okruzhnosti na kompleksnoy ploskosti [Circles in the complex plane]. Geometriya i grafika [Geometry and Graphic]. 2020, V. 8, I. 4, pp. 3-12. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-3-12. (in Russian)

12. Girsh A.G. O pol'ze mnimostey v geometrii [On the Use of Imaginations in Geometry]. Geometriya i grafika [Geometry and Graphic]. 2020, V. 8, I. 2, pp. 33-40. DOI:https://doi.org/10.12737/2308-4898-2020-33-40. (in Russian)

13. Girsh A.G., Korotkij V.A. Mnimye tochki v dekartovoj sisteme koordinat [Imaginary points in a Cartesian coordinate system]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 3, pp. 28-35. DOI:https://doi.org/10.12737/artcle_5dce651d80b827.49830821. (in Russian)

14. Grafskij O.A. Vvedenie mnimyh elementov v nachertatel'nuyu geometriyu [The introduction of imaginary elements in descriptive geometry]. Khabarovsk, GOU VPO "Dalnevost. State university of communication lines. Ministry of Railways of Russia" Publ., 2004. 168 p. (in Russian)

15. Grafskii O.A. Modelirovanie mnimyh elementov na ploskosti [Modeling imaginary elements on a plane]. Khabarovsk, Publishing house of dvgups Publ., 2004. 161 p. (in Russian)

16. Ivanov G.S., Dmitrieva I.M. O zadachakh nachertatel'noy geometrii s mnimymi resheniyami [On the problems of descriptive geometry with imaginary solutions]. Geometriya i grafika [Geometry and Graphic]. 2015, V. 3, I. 2, pp. 3-8. DOI:https://doi.org/10.12737/12163. (in Russian)

17. Ignat'ev S.A., Muratbakeev E.H., Voronina M.V. Povysheniye naglyadnosti predstavleniya izuchayemykh v nachertatel'noy geometrii ob"yektov [Improving the visibility of the representation of objects studied in descriptive geometry]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, V. 1, pp. 44-53. DOI:https://doi.org/10.12737/2308-4898-2022-10-1-44-53. (in Russian)

18. Kantor I.L., Solodovnikov A.S. Giperkompleksnyye chisla [Hypercomplex numbers]. Moscow: Nauka Publ., 1973. 144 p. (in Russian)

19. Kirillov A.A. Chto takoye chislo? [What is a number]. Moscow, Fizmatlit Publ., 1993. 80 p. (in Russian)

20. Kompleksnaya geometriya i dr. // Anton Georgievich Girsh [Complex geometry, etc. // Anton G. Girsh] URL: http://www.anhirsch.de (Accessed: 11.09.2022). (in Russian)

21. Korotkij V.A. Mnimye linejnye elementy v algebre, geometrii i komp'yuternoj grafike [Imaginary linear elements in algebra, geometry and computer graphics]. Prikladnaya matematika i fundamental'naya informatika [Applied Mathematics and Fundamental Computer Science]. 2019, V. 6, I. 2, pp. 34-48. DOI:https://doi.org/10.25206/2311-4908-2019-6-2-34-48. (in Russian)

22. Korotkij V.A. Mnimye pryamye v dekartovoj sisteme koordinat [Imaginary straight lines in a Cartesian coordinate system]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 4, pp. 5-17. DOI:https://doi.org/10.12737/artcle_5dce651d80b827.49830821. (in Russian)

23. Mezhdunarodnaya internet-konferentsiya «Problemy kachestva graficheskoy podgotovki studentov v tekhnicheskom vuze: problemy, traditsii i innovatsii» [International Internet conference «Problems of the quality of graphic training of students in a technical university: problems, traditions and innovations»]. Perm, 2015. URL: http://dgng.pstu.ru/conf2015/. (in Russian)

24. Peklich V.A. Mnimaya nachertatel'naya geometriya [Imaginary Descriptive Geometry]. Moscow, ASV Publ., 2007. 104 p. (in Russian)

25. Sal'kov N.A. Mesto nachertatel'noj geometrii v sisteme geometricheskogo obrazovaniya tekhnicheskih vuzov [Place of descriptive geometry in the system of geometric education of technical universities]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 53-61. DOI:https://doi.org/10.12737/21534. (in Russian)

26. Sal'kov N.A. Ob izobrazheniyakh [About images]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 2, pp. 3-10. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-3-10. (in Russian)

27. Suvorov F.M. Ob izobrazhenii voobrazhayemykh tochek i voobrazhayemykh pryamykh na ploskosti i o postroyenii krivykh liniy vtoroy stepeni, opredelyayemykh s pomoshch'yu voobrazhayemykh tochek i kasatel'nykh [On the representation of imaginary points and imaginary lines on the plane and on the construction of curved lines of the second degree, determined using imaginary points and tangents]. Kazan, Tipografiya imperatorskogo Universiteta Publ., 1884. 130 p. (in Russian)

28. Umbetov N.S. Demonstratsiya obshchikh elementov involyutsii na prostom primere [Demonstration of common elements of involution with a simple example]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 2, pp. 3-10. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-3-10. (in Russian)

29. Florenskij P.A. Mnimosti v geometrii: rasshirennyye oblasti dvukhmernykh obrazov geometrii [Mnimosti in geometry: extended areas of 2D geometry images]. Moscow, Editorial URSS Publ., 2004. 72 p. (in Russian)

30. Chetverukhin N.F., Levitskiy V.S., Z.I. Pryanishnikova Z.I., Tevlin A.M., Fedorov G.I. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, Vysshaya shkola Publ., 1963. 420 r. (in Russian)

31. Yaglom I.M. Kompleksnyye chisla i ikh primeneniye v geometrii [Complex numbers and heir application in geometry]. Moscow, Editorial URSS Publ., 2004. 192 p. (in Russian)

32. Duden Rechnen und Mathematik. Mannheim, Wien, Zürich: Dudenverlag, 2000. 720 p.

33. Girsch A. Ekhtension of the 'Villarceau-Sektion' to Surfaces of Revolution with a Generating Sonis // Jurnal for Seometru and Graphics, 6(2000/2), pr. 121-132.

34. Imaginary Numbers are Real 13 Videos. (https://www.youtube.com/ watch?v=T647CGsuOVU&list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF.

35. Hirsch A. Extension of the 'Villarceau-Sektion' to Surfaces of Revolution with a Generating Conic // Jurnal for Geometriy and Graphics, 2000, V. 6, I. 2, pp. 121-132.

36. Stachel H.: Remarks on A.Hirsch's Paper conserning Villatceau-Sections. Jurnal for Geometriy and Graphics. 2002. V. 6, pp. 133-139.

37. Reye Th. Geometrie der Lage. 1. Abteilung. Leipzig, 1882, 215 r.

38. Stachel H. Remarks on A. Hirsch's Paper conserning Villatceau-Sections. Jurnal for Geometry and Graphics. 2002. V. 6, pp. 133-139.

Login or Create
* Forgot password?