The involution of projective rows with a common support, its geometric interpretation are considered. Taking the special case of the geometric interpretation of involution, the problem of constructing harmonically conjugate points is solved for given initial conditions, when one circle and a radical axis of this circle with a bundle of corresponding circles with a common radical axis are given. A proposal is given on the existence of a single circle in a bundle, the diametrical points of which on the lines of centers make up a harmonic four with diametral points of a given circle. It is shown that using the diametrical points of a given circle and points P, Q of the radical axis in elliptical involution, you can build double points X, Y and the radical axis of the PQ of circles in hyperbolic involution. And the tangent from the vertical diammetral point of the circle w1 to the circle passing through double points of hyperbolic involution - there is a point P(Q) of the radical axis of elliptical involution. The indicated properties make it possible to carry out a mutual transition from one involution to another. It was established that the diagonals of the quadrangles obtained when crossing all the circles of the bundle, orthogonal to the two given in elliptical involution, intersect in the center of the radical axis of the given circles in hyperbolic involution, and the diagonals of the quadrangles of all circles of the beam in hyperbolic involution are intersected in the center of the radical axis of the given circles in elliptical Involution. The geometric place (GP) of each point of the harmonic four is constructed. In this case, the geometric place a pair of harmonic four in an elliptic involution turns out to be an ellipse that has a common tangent at points P with the circle of double points of the hyperbolic involution. And the GP pairs of the harmonic four for hyperbolic involution are two branches of the hyperbola that pass through the centers of the circles that define the elliptical involution.
Geometric transformations; harmonically conjugate points; radical axis; radical center; elliptic involution; hyperbolic involution
1. Argunov B.I. Geometricheskie postroeniya na ploskosti. Posobie dlya studentov pedagogicheskih institutov. [Tekst] / B.I. Argunov, M.B. Balk. - 2 e izd., - M., Uchpedgiz, 1957. - 268 s.
2. Artisevich A.E. Nestandartnoe reshenie odnoy geometricheskoy zadachi s pomosch'yu radikal'nyh osey okruzhnostey. [Tekst] / A.E. Artisevich, N.A. Loboda, S.I. Kalashnikova, N.N. Kuprienko // Pedagogicheskie nauki: Voprosy teorii i praktiki: Sb. statey Mezhdunarodnoy nauchno-prakticheskoy konferencii. - Penza. 2020. - S. 143-145.
3. Bernhardt A. Proektivnaya geometriya. Kurs, osnovannyy na geometricheskih postroeniyah i nablyudeniyah. Uchebnik, prednaznachennyy dlya prepodavaniya i samostoyatel'nogo izucheniya. [Tekst]: / A. Bernhardt; per. s nem. O.I. Chibisovoy - M.: «Parsifal'». 2003. - 184 s.
4. Borovikov I.F. O primenenii preobrazovaniy pri reshenii zadach nachertatel'noy geometrii [Tekst] / I.F. Borovikov, G.S. Ivanov, N.G. Surkova // Geometriya i grafika. - 2018. - T. 6. - № 2. - S. 78-84. - DOI: 10.12737/ article_5b55a35d683a33.30813949.
5. Voloshinov D.V. Vizual'no-graficheskoe proektirovanie edinoy konstruktivnoy modeli dlya resheniya analogov zadachi Apolloniya s uchetom mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. - 2018. - T. 6. - № 2. - S. 23-46. - DOI: 10.12737/ article_5b559c70becf44.21848537.
6. Voloshinov D.V. Ob utochnenii nekotoryh ponyatiy konstruktivnoy geometrii. [Tekst] / D.V. Voloshinov // Geometricheskoe modelirovanie. Komp'yuternaya grafika v obrazovanii. - Tomsk, 2018 g. - S. 350-353.
7. Voloshinov D.V. Edinyy konstruktivnyy algoritm postroeniya fokusov krivyh vtorogo poryadka [Tekst] / D.V. Voloshinov // Geometriya i grafika. - 2018. - T. 6. - № 2. - S. 47-54. - DOI: 10.12737/ article_5b559dc3551f95.26045830.
8. Voloshinov D.V. Algoritm resheniya zadachi Apolloniya na osnove postroeniya ortogonal'nyh okruzhnostey. [Tekst] / D.V. Voloshinov // 26-ya Mezhdunarodnaya konferenciya (GraphiCon2016), - Nizhniy Novgorod. - 2016. - S. 284-288.
9. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie. Teoriya, praktika, avtomatizaciya: monografiya [Tekst] / D.V.Voloshinov. // Saarbrücken: Lambert Academic Publishing. - 2010. - 355 c.
10. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 3 [Tekst] / V.I. Vyshnepol'skiy, K.A. Kirshanov, K.T. Egiazaryan // Geometriya i grafika. - 2018. - T. 6. - № 4. - S. 3-19. - DOI: 10.12737/ article_5c21f207bfd6e4.78537377.
11. Girsh A.G. Novye zadachi nachertatel'noy geometrii. Prodolzhenie [Tekst] / A.G. Girsh // Geometriya i grafika. - 2022. - T. 9. - № 4. - S. 3-10. - DOI:https://doi.org/10.12737/2308-4898-2022-9-4-3-10.
12. Girsh A.G. Okruzhnosti na kompleksnoy ploskosti [Tekst] / A.G. Girsh // Geometriya i grafika. - 2021. - T. 8. - № 4. - S. 3-12. - DOI:https://doi.org/10.12737/2308-4898-2021-8-4-3-12.
13. Girsh A.G. Vzaimnye zadachi s konikami [Tekst] / A.G. Girsh // Geometriya i grafika. - 2020. - T. 8. - № 1. - S. 15-24. - DOI:https://doi.org/10.12737/2308-4898-2020-8-1-15-24.
14. Girsh A.G. Fokusy algebraicheskih krivyh [Tekst] / A.G. Girsh // Geometriya i grafika. - 2015. - T. 3. - № 3. - S. 4-17. - DOI:https://doi.org/10.12737/14415.
15. Girsh A.G. Mnimosti v geometrii. [Tekst] / A.G. Girsh // Geometriya i grafika. - 2014. T. 2. № 2. - S. 3-8.
16. Girsh A.G. «Naglyadnaya mnimaya geometriya» [Tekst] / A.G. Girsh - M.: OOO «IPC "Maska"», 2008 - 200 s., 150 ris.
17. Glagolev N.A. Proektivnaya geometriya. [Tekst] / N.A. Glagolev 2 e. izd. - M.: Vysshaya shkola, 1963. - 352 s.
18. Gorshkova L.S. Proektivnaya geometriya [Tekst]: Uchebnoe posobie dlya studentov i prepodavateley pedagogicheskih vuzov / L.S. Gorshkova, V.I. Pan'zhenskiy, E.V. Marina - Penza, Penzenskiy gos. ped. un-t im. V.G. Belinskogo. - 2003. - 164s.
19. Ivanov G.S. Konstruirovanie odnomernyh obvodov, prinadlezhaschih poverhnostyam, putem ih otobrazheniya na ploskost' [Tekst] / G.S. Ivanov // Geometriya i grafika. - 2018. - T. 6. - № 1. - S. 3-9. - DOI: 10.12737/ article_5ad07ed61bc114.52669586.
20. Ivanov G.S. Nelineynye formy v inzhenernoy grafike [Tekst] / G.S. Ivanov, I.M. Dmitrieva // Geometriya i grafika - 2017. - T. 5. - № 2. - S. 4-12. - DOI: 10.12737/ article_5953f295744f77.58727642.
21. Ivanov G.S. Princip dvoystvennosti - teoreticheskaya baza vzaimosvyazi sinteticheskih i analiticheskih sposobov resheniya geometricheskih zadach [Tekst] / G.S. Ivanov, I.M. Dmitrieva // Geometriya i grafika - 2016. - T. 4. - № 3. - S. 3-10. - DOI: 10.12737/ 21528.
22. Ivanov G.S. O zadachah nachertatel'noy geometrii s mnimymi resheniyami [Tekst] / G.S. Ivanov, I.M. Dmitrieva // Geometriya i grafika - 2015. - T. 3. - № 2. - S. 3-8. - DOI: 10.12737/ 12163.
23. Korotkiy V.A. Approksimaciya fizicheskogo splayna s bol'shimi progibami [Tekst] / V.A. Korotkiy, I.G. Vitovtov // Geometriya i grafika. - 2021. - T. 9. - № 1. - S. 3-19. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-3-19.
24. Korotkiy V.A. Rekonstrukciya kvadratichnogo kremonova preobrazovaniya [Tekst] / V.A. Korotkiy // Geometriya i grafika. - 2017. - T. 5. - № 2. - S. 59-68. - DOI: 10.12737/ article_5953f3002a72d8.28689872.
25. Korotkiy V.A. Graficheskie algoritmy rekonstrukcii krivoy vtorogo poryadka, zadannoy mnimymi elementami [Tekst] / V.A. Korotkiy, A.G. Girsh // Geometriya i grafika. - 2016. - T. 4. - № 4. - S. 59-68. - DOI: 10.12737/ 22840.
26. Korotkiy V.A. Kvadratichnoe preobrazovanie ploskosti, ustanovlennoe puchkom konicheskih secheniy. [Tekst] / V.A. Korotkiy // Zhurnal «Omskiy nauchnyy vestnik. Inzhenernaya geometriya i komp'yuternaya grafika». №1 (117). 2013. S. 9-14.
27. Ponarin Ya.P. Elementarnaya geometriya [Tekst]. v 2 t. T. 1: Planimetriya, preobrazovaniya ploskosti / Ya.P. Ponarin - M.: MCNMO, 2008. - 312 s.
28. Sal'kov N.A. Ciklida Dyupena i krivye vtorogo poryadka. Chast 1 [Tekst] / N.A. Sal'kov // Geometriya i grafika - 2016. - T. 4. - № 2. - S. 19-28. - DOI: 10.12737/ 19829.
29. Seliverstov A.V. O poiske osobyh tochek algebraicheskoy krivoy [Tekst] / A.V. Seliverstov // Geometriya i grafika. - 2017. - T. 5. - № 1. - S. 36-42. - DOI: 10.12737/ 25118.
30. Skopec Z.A. Preobrazovanie dvuh krivyh vtorogo poryadka v dve okruzhnosti posredstvom gomologii. [Tekst] / Z.A. Skopec - Izv. vuzov. Matem. - 1964. - № 2. - S. 139-143.
31. Heyfec A.L. Koniki kak secheniya kvadrik ploskost'yu (obobschennaya teorema Dandelena) [Tekst] / A.L. Heyfec // Geometriya i grafika - 2017. - T. 5. - № 2. - S. 45-58. - DOI: 10.12737/ article_5953f32172a8d8.94863595.
32. Chetveruhin N.F. Proektivnaya geometriya. [Tekst]: 8 e izd. Uchebnik dlya ped. in-tov. / Chetveruhin N.F. - M., Prosveschenie, 1969. - 368 s.