The problem of this research is the impossibility of applying parametric functions in theoretical-multiple modeling, that significantly narrows the range of problems solved by analytical models and methods of computational geometry. To expand the possibilities of R-functional modeling application in the field of computer-aided design systems, it is proposed to solve the problem of finding an appropriate representation of parametric curves using functional-voxel computer models. The method of functional-voxel modeling is considered as a computer graphic representation of analytical functions’ areas on the computer. The basic principles and examples of combining R-functional and functional-voxel methods with obtaining R-voxel modeling have been presented. In this case, R-functional operations have been implemented on functional-voxel models by means of functional-voxel arithmetic. Based on the described approach to modeling of theoretical-multiple operations for the function area represented by graphical M-images, two approaches to construction a functional-voxel model of the Bezier curve have been proposed. The first one is based on the sequential construction of the curve’s interior by intersection a positive area of half-planes, which enumeration is performed by De Castiljo algorithm. This approach is limited by the convexity of the curve’s reference polygon. This problem’s solution has been considered. The second approach is based on the application of a two-dimensional function for local zeroing (FLOZ), i.e., a nil segment on the positive area of function values. By consecutive unification of such segments it is proposed to construct the required parametrically given curve. Some features related to operation and realization of the proposed approaches have been described and illustrated in detail. The advantages and disadvantages of described approaches have been highlighted. Assumptions about applicability of proposed algorithms for Bezier curve functional-voxel modeling in solving of various geometric modeling problems have been made.
functional-voxel method; R-functional modeling; Bezier curve; R-voxel modelling; FLOZ
1. Antonova I.V. Matematicheskoe opisanie vrascheniya tochki vokrug ellipticheskoy osi v nekotoryh chastnyh sluchayah [Tekst] / I.V. Antonova, I.A. Beglov, E.V. Solomonova // Geometriya i grafika. - 2019. - T. 7. - № 3. - S. 36-50. - DOI:https://doi.org/10.12737/article_5dce66dd9fb966.59423840.
2. Antonova I.V. Matematicheskoe opisanie chastnogo sluchaya kvazivrascheniya fokusa ellipsa vokrug ellipticheskoy osi [Tekst] / I.V. Antonova, E.V. Solomonova, N.S. Kadykova // Geometriya i grafika. - 2021. - T. 9. - № 1. - S. 39-45. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-39-45.
3. Bondarev A.E. Analiz razvitiya koncepciy i metodov vizual'nogo predstavleniya dannyh v nauchnyh issledovaniyah zadach vychislitel'noy fiziki [Tekst] / A.E. Bondarev, V.M. Chechetkin, V.A. Galaktionov // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. - 2011. - T. 51. - № 4. - S. 669-683.
4. Vin Tun E. Postroenie receptornyh geometricheskih modeley ob'ektov slozhnyh tehnicheskih form [Tekst] / E. Vin Tun, L.V. Markin // Geometriya i grafika. - 2019. - T. 7. - № 4. - S. 44-56. - DOI:https://doi.org/10.12737/2308-4898-2020-44-56.
5. Girsh A. G. Operaciya peresecheniya na kompleksnoy ploskosti [Tekst] / A.G. Girsh // Geometriya i grafika. - 2021. - T. 9. - № 1. - S. 20-28. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-20-28
6. Golovanov N.N. Geometricheskoe modelirovanie [Tekst] / N.N. Golovanov. - M.: FIZMATLIT, 2002. - 472 s.
7. Ziatdinov R. Krivye vysokogo kachestva i ih primenenie v geometricheskom modelirovanii i esteticheskom dizayne [Tekst] / R. Ziatdinov, K.T. Miura // Trudy XII mezhdunarodnoy konferencii «Sistemy proektirovaniya, tehnologicheskoy podgotovki proizvodstva i upravleniya etapami zhiznennogo cikla promyshlennogo produkta» (CAD/CAM/PDM-2012). - 2012. - S. 145-147.
8. Ivaschenko A.V. Obschiy analiz formy linii peresecheniya dvuh odnotipnyh poverhnostey vtorogo poryadka [Tekst] / A.V. Ivaschenko, D.A. Vavanov // Geometriya i grafika. - 2020. - T. 8. - № 4. - S. 24-34. - DOI:https://doi.org/10.12737/2308-4898-2021-8-4-24-34.
9. Korotkiy V.A. Approksimaciya fizicheskogo splayna s bol'shimi progibami [Tekst] / V.A. Korotkiy, I.G. Vitovtov // Geometriya i grafika. - 2021. - T. 9. - № 1. - S. 3-9. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-3-19.
10. Korotkiy V.A. Kubicheskie krivye v inzhenernoy geometrii [Tekst] / V.A. Korotkiy // Geometriya i grafika. - 2020. - T. 8. - № 3. - S. 3-24. - DOI:https://doi.org/10.12737/2308-4898-2020-3-24.
11. Lotorevich E.A. Geometricheskie preobrazovaniya prostranstva funkcional'no-voksel'noy modeli [Tekst]: dis. … kand. tehn. nauk 05.01.01 / E. A. Lotorevich. - M., 2016. - 111 c.
12. Loktev M.A. Interaktivnaya sistema sozdaniya i komponovki funkcional'no-voksel'nyh modeley dlya resheniya zadachi poiska puti gradientnym metodom [Tekst] / M.A. Loktev [i dr.] // Vestnik MGTU Stankin. - 2016. - T. 3. - № 38. - S. 66-69.
13. Loktev M.A. Metod funkcional'noy vokselizacii poligonal'nyh ob'ektov na osnove matematicheskogo apparata R-funkciy [Tekst] / M.A. Loktev, A.V. Tolok // Prikladnaya informatika. - 2016. - T. 11. - № 1 (61). - S. 127-134.
14. Loktev M.A. Osobennosti primeneniya funkcional'no-voksel'nogo modelirovaniya v zadachah poiska puti s prepyatstviyami [Tekst] / M.A. Loktev // Informacionnye tehnologii v proektirovanii i proizvodstve. - 2016. - № 1. - S. 45-49.
15. Loktev M.A. Postroenie lineynoy struktury skeleta dlya zamknutogo kontura slozhnoy geometrii na osnove metoda funkcional'no-voksel'nogo modelirovaniya [Elektronnyy resurs]/ M.A. Loktev [i dr.] // Nauchnaya vizualizaciya. - 2019. - T. 11. - № 1. - S. 1-10. - URL: http://sv-journal.org/2019-1/01/.
16. Loktev M.A. Sposob modelirovaniya funkcional'noy oblasti dlya krivyh, postroennyh na osnove lineynoy kombinacii bazisnyh mnogochlenov Bernshteyna [Tekst] / M.A. Loktev, A. V. Tolok, N.B. Tolok // Programmirovanie. - 2019. - № 1. - S. 52-58.
17. Loktev M.A. Funkcional'nyy princip obhoda prepyatstviy s primeneniem metoda funkcional'no-voksel'nogo modelirovaniya [Tekst] / M.A. Loktev, A.V. Tolok // Vestnik MGTU Stankin. - 2016. - T. 1. - № 36. - S. 75-80.
18. Mihaylenko A.V. Formoobrazuyuschie poverhnosti w-urovnya R-funkcional'nogo modelirovaniya (RFM) v organizacii tehnologii obrabotki detaley slozhnoy formy. [Tekst] / A.V. Mihaylenko, A.V. Tolok // Vestnik MGTU Stankin. - 2015. - T. 2 - № 33. - S. 73-77.
19. Plaksin A.M. Geometricheskoe modelirovanie teplovyh harakteristik ob'ektov funkcional'no-voksel'nym metodom [Tekst] / A.M. Plaksin, S.A. Pushkarev // Geometriya i grafika. - 2020. - T. 8. - № 1. - C. 25-32. - DOI:https://doi.org/10.12737/2308-4898-2020-25-32.
20. Pushkarev S.A. Voksel'no-matematicheskoe modelirovanie pri reshenii zadach opredeleniya ploschadi dlya poverhnostey detaley [Tekst] / S.A. Pushkarev, A.V. Tolok, E.A, Lotorevich, D.A. Silant'ev // Informacionnye tehnologii v proektirovanii i proizvodstve. - 2013. - T. 3. - S. 29-33.
21. Rvachev V.L. Teoriya R-funkciy i nekotorye ee prilozheniya [Tekst] / V.L. Rvachev - Kiev: Naukova dumka, 1982. - 552c.
22. Ryazanov S. A. Analiticheskie zavisimosti kinematicheskogo formoobrazovaniya nachal'nyh poverhnostey elementov chervyachnoy peredachi [Tekst] / S.A. Ryazanov, M.K. Reshetnikov // Geometriya i grafika. - 2019. - T. 7. - № 2. - S. 65-75. - DOI:https://doi.org/10.12737/article_5d2c2dda42fda7.79858292
23. Tolok A.V. R-funkcii v analiticheskom proektirovanii s primeneniem sistemy «RANOK» [Tekst] / A.V. Tolok, K.V. Maksimenko-Sheyko, T.I. Sheyko // Vestnik MGTU Stankin. - 2010. - № 4. - S. 139-151.
24. Tolok A.V. R-funkcii v komp'yuternom modelirovanii dizayna 3D poverhnosti avtomobilya [Tekst] / A.V. Tolok, K.V. Maksimenko-Sheyko, T.I. Sheyko, D.A. Lisin // Prikladnaya informatika - 2012. - T. 6 - № 36 - S. 78-85.
25. Tolok A.V. Vizual'naya diagnostika fizicheskih velichin na osnove metoda funkcional'no-voksel'nogo modelirovaniya [Elektronnyy resurs] / A.V. Tolok i [dr.] // Nauchnaya vizualizaciya. - 2020. - T. 12. - № 3. - S. 51-60. - URL: http://sv-journal.org/2020-3/05/.
26. Tolok A.V. Osnovy analiticheskogo proektirovaniya na funkcional'no-voksel'nyh modelyah [Tekst] / A.V. Tolok, N.B. Tolok // Informacionnye tehnologii v proektirovanii i proizvodstve. - 2016. - T. 4. (164). - S. 15-23.
27. Tolok A.V. Funkcional'no-voksel'naya model' v zadachah intellektualizacii sistem avtomatizirovannogo proektirovaniya [Tekst] / A.V. Tolok, A.M. Plaksin A.M. - 2017. - T. 2 - № 41. - S. 75-78.
28. Tolok A.V. Funkcional'no-voksel'nyy metod v komp'yuternom modelirovanii [Tekst] / A.V. Tolok. - M.: FIZMATLIT, 2016. - 112 s.
29. Yurkov V. Yu. Approksimaciya mnozhestv pryamyh na ploskosti [Tekst] / V.Yu. Yurkov // Geometriya i grafika. - 2019. - T. 7. - № 3. - S. 60-69. - DOI:https://doi.org/10.12737/article_5dce6cf7ae1d70.85408915.
30. Sycheva A. A. Construction of the Functional Voxel Model for a Spline Curve [Elektronnyy resurs] / A.A. Sycheva, A.V. Tolok, N.B. Tolok // Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020, St.Petersburg). - V. 2744. - DOI:https://doi.org/10.51130/graphicon-2020-2-3-52. - URL: http://ceur-ws.org/Vol-2744/paper52.pdf