from 01.01.2007 until now
Russian Federation
from 01.01.2011 until now
Russian Federation
In this paper has been considered the main content and distinctive features of the “Geometric Modeling” training course for the “Mathematics and Computer Science” training program 02.03.01 (“Mathematical and Computer Modeling” specialization). The goal of the “Geometric Modeling” course study is the assimilation of mathematical methods for construction of geometric objects with complex curved shapes, and techniques for their computer visualization by using polygons of curves and surfaces. Methods for construction of structures’ curved shapes using spline representations, as well as techniques for construction of surfaces and volumetric geometries using motion operations and basic logical operations on geometric objects are considered. The spline representations include linear and bilinear splines, Hermite cubic splines and Hermite surfaces, natural cubic and bicubic interpolation splines, Bezier curves and surfaces, rational Bezier splines, B-splines and B-spline surfaces, NURBS-curves and NURBS-surfaces, transfinite interpolation methods, and splines of surfaces with triangular form. Logical operations for intersection of two spline curves, and intersection of two parametric surfaces are considered. The principles of scientific visualization and computer animation are considered in this course as well. Some examples for visualization of initial data and results of curves and surfaces construction in two- and three-dimensional spaces through the software shell developed by authors and used by students while doing tests have been demonstrated. The software shell has a web interface with the WebGL library graphic support. Tasks for four practical studies in a computer classroom, as well as several variations of homework are represented. The problems occurring in preparation materials for some course sections are discussed, as well as the practical importance of acquired knowledge for the further progress of students. The paper may be interesting for teachers of “Geometric Modeling” and “Computer Graphics” courses aimed to students with a specialization in mathematics and information, as well as to those who independently develop software interfaces for algorithms of geometric modeling.
geometric modeling; mathematical and computer modeling; computer graphics; spline theory; scientific visualization
1. Aleksyuk A.A. Laboratornyy praktikum po komp'yuternoy grafike [Tekst] / A.A. Aleksyuk // Geometriya i grafika. -- 2017. -- T. 5. -- № 3. -- S. 78-85. -- DOI:https://doi.org/10.12737/article_59bfa72b151052.53229281.
2. Brylkin Yu.V. Modelirovanie mikro- i nanostruktury poverhnosti dlya resheniya zadach gazovoy dinamiki i teplomassoobmena [Tekst] / Yu.V. Brylkin // Geometriya i grafika. -- 2018. -- T. 6. -- № 2. -- S. 95-100. -- DOI:https://doi.org/10.12737/article_5b55a695093294.45142608.
3. Golovanov N.N. Geometricheskoe modelirovanie [Tekst] / N.N. Golovanov. - M.: Fizmatlit, 2002. - 472 s.
4. Golovanov N.N. Komp'yuternaya geometriya [Tekst]: ucheb. posobie dlya stud. vuzov / N.N. Golovanov [i dr.]. - M.: Akademiya, 2006. - 512 s.
5. Dimitrienko Yu.I. Metod lentochnyh adaptivnyh setok dlya chislennogo modelirovaniya v gazovoy dinamike [Tekst] / Yu.I. Dimitrienko, V.P. Kotenev, A.A. Zaharov. - M.: Fizmatlit, 2011. - 280 s.
6. Zav'yalov Yu.S. Metody splayn-funkciy [Tekst] / Yu.S. Zav'yalov, B.I. Kvasov, V.L. Miroshnichenko. - M.: Nauka, 1980. - 352 c.
7. Kvasov B.I. Metody izogeometricheskoy approksimacii splaynami [Tekst] / B.I. Kvasov. - M.: Fizmatlit, 2006. - 360 s.
8. Konopackiy E.V. Modelirovanie approksimiruyuschego 16-tochechnogo otseka poverhnosti otklika primenitel'no k resheniyu neodnorodnogo uravneniya teploprovodnosti [Tekst] / E.V. Konopackiy // Geometriya i grafika. -- 2019. -- T. 7. -- № 2. -- S. 39-46. -- DOI:https://doi.org/10.12737/article_5d2c1a551a22c5.12136357.
9. Korotkiy V.A. Approksimaciya fizicheskogo splayna s bol'shimi progibami [Tekst] / V.A. Korotkiy, I.G. Vitovtov // Geometriya i grafika. - 2021. -- T. 9. -- № 1. -- S. 3-19. -- DOI:https://doi.org/10.12737/2308-4898-2021-9-1-3-19.
10. Korotkiy V.A. Konstruirovanie G2-gladkoy sostavnoy krivoy na osnove kubicheskih segmentov Bez'e [Tekst] / V.A. Korotkiy // Geometriya i grafika. -- 2021. -- T. 9. -- № 2. -- S. 12-28. -- DOI:https://doi.org/10.12737/2308-4898-2021-9-2-12-28.
11. Korotkiy V.A. Kubicheskie krivye v inzhenernoy geometrii [Tekst] / V.A. Korotkiy // Geometriya i grafika. -- 2020. -- T. 8. -- № 3. -- S. 3-24. --DOI:https://doi.org/10.12737/2308-4898-2020-3-24
12. Li K. Osnovy SAPR (CAD/CAM/CAE) [Tekst]: per. s angl. / K. Li. - SPb.: Piter, 2004. - 560 s.
13. Nikulin E.A. Komp'yuternaya geometriya i algoritmy mashinnoy grafiki [Tekst] / E.A. Nikulin. - SPb.: BHV-Peterburg, 2003. - 560 s.
14. Pavlidis T. Algoritmy mashinnoy grafiki i obrabotki izobrazheniy [Tekst]: per. s angl. / T. Pavlidis. -- M.: Radio i svyaz', 1986. - 398 s.
15. Plaksin A.M. Geometricheskoe modelirovanie teplovyh harakteristik ob'ektov funkcional'no-voksel'nym metodom [Tekst] / A.M. Plaksin, S.A. Pushkarev // Geometriya i grafika. -- 2020. -- T. 8. -- № 1. -- S. 25-32. --DOI:https://doi.org/10.12737/2308-4898-2020-25-32.
16. Polyakov A.Yu. Metody i algoritmy komp'yuternoy grafiki v primerah na Visual C++ [Tekst] / A.Yu. Polyakov, V.A. Brusencev. - 2-e izd., pererab. i dop. - SPb.: BHV-Peterburg, 2003. - 560 s.
17. Rodzhers P. Matematicheskie osnovy mashinnoy grafiki [Tekst]: per. s angl. / D. Rodzhers, Dzh. Adams. - M.: Mir, 2001. - 604 s.
18. Romanova V.A. Vizualizaciya pravil'nyh mnogogrannikov v processe ih obrazovaniya [Tekst] / V.A. Romanova // Geometriya i grafika. -- 2019. -- T. 7. -- № 1. -- S. 55-67. -- DOI:https://doi.org/10.12737/article_5d2c1a551a22c5.12136357.
19. Sal'kov N.A. Geometricheskaya sostavlyayuschaya tehnicheskih innovaciy [Tekst] / N.A. Sal'kov // Geometriya i grafika. -- 2018. -- T. 6. -- № 2. -- S. 85-93. -- DOI:https://doi.org/10.12737/article_5b55a5163fa053.07622109.
20. Samarskiy A.A. Chislennye metody [Tekst]: ucheb. posobie dlya vuzov / A.A. Samarskiy, A.V. Gulin. - M.: Nauka, 1989. - 432 s.
21. Hern D. Komp'yuternaya grafika i standart OpenGL [Tekst]: per. s angl. / D. Hern, M.P. Beyker. - 3 izd. - M.: Vil'yams, 2005. - 1168 s.
22. Hill F. OpenGL. Programmirovanie komp'yuternoy grafiki. Dlya professionalov [Tekst]: per. s angl. / F. Hill. - SPb.: Piter, 2002. - 1088 s.
23. Shevelev Yu.D. Matematicheskie osnovy zadach proektirovaniya [Tekst]: ucheb. posobie / Yu.D. Shevelev. - M.: Kompaniya Sputnik+, 2005. - 198 s.
24. Shikin E.V. Nachala komp'yuternoy grafiki [Tekst] / E.V. Shikin, A.V. Boreskov, A.A. Zaycev. - M.: Dialog-MIFI, 1993. - 138 s.
25. Angel E., Shreiner D. Interactive computer graphics. A top-down approach with WebGL. 7th ed. Pearson, 2015. 702p.
26. Buss S.R. 3-D Computer Graphics. A Mathematical Introduction with OpenGL Cambridge University Press, 2003. 397 p.
27. Farin G. Curves and Surfaces for CAGD. 5th ed. Academic Press, 2002. 520 p.
28. Guha S. Computer graphics through OpenGL. From Theory to Experiments. 2nd ed. CRC Press, 2015.
29. McReynolds T., Blythe D. Advanced Graphics Programming Using OpenGL. Elsevier, 2005. 672 p.
30. Piegl L., Tiller W. The NURBS Book. 2nd ed. Springer, 1996. 646 p.
31. Silver D., Post F.H., Sadarjoen I.A. Flow Visualization. Wiley Encyclopedia of Electrical and Electronics Engineering, 1999. DOI:https://doi.org/10.1002/047134608X.W7512.
32. Solid Propellant Combustion Modeling [Elektronnyy resurs] // URL: https://www.flow3d.com/solid-propellant-combustion-modeling (data obrascheniya 31.08.2019).