NEW PROBLEMS OF DESCRIPTIVE GEOMETRY. CONTINUATION
Abstract and keywords
Abstract (English):
Complex geometry is a synthesis of Euclidean E-geometry (circle geometry) and pseudo-Euclidean M-geometry (hyperbola geometry). Each of them individually defines a non-closed system in which a correctly posed problem may not give a solution. Analytical geometry represents a closed system. In it, a correctly posed problem always gives solutions in the form of complex numbers, for each of which, one of the parts may be equal to zero. Finding imaginary solutions and imaginary figures formed by a set of such solutions is a new problem in descriptive geometry. Degenerated conics and quadrics, or curves and surfaces of higher orders, constitute a new class of figures and a new class of problems in descriptive geometry. For example, null-circle, null-sphere, null-cylinder, null-torus. In this paper the problem for studying the shape of second (conics, quadrics), third (conoid), and fourth (torus) order figures is posed. The latest suggest a meeting with new geometric properties of figures. Geometric operations are still immersed in the complex space E + M or real - imaginary. The examples under consideration continue a series of degenerated figures in which the null-circle splits into isotropic lines. Isotropic lines are taken as generators of surfaces. They form a cone of revolution and a hyperbolic paraboloid (an oblique plane).

Keywords:
analytical figure; zero-circle; imaginary addition; left isotrope; right isotrope; circular zero-cylinder; null-cylinder disintegration; isotropic planes; isotropic cone
References

1. Aleksandrov P.S. Lekcii po analiticheskoy geometrii [Tekst] / P.S. Aleksandrov - M.: Nauka, 1968. - 382 s.

2. Balk M.B. Real'nye primeneniya mnimyh chisel. [Tekst] / M.B. Balk, G.D. Balk, A.A. Poluhin - Kiev: Radyans'ka shkola, 1988. - 255 s. - ISBN 5-330-00379-2.

3. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. - 2020. - T. 8. - № 2. S. 3-32. DOIhttps://doi.org/10.12737/2308-4898-2020-3-32.

4. Girsh A.G. Mnimosti v geometrii [Tekst] / A.G. Girsh // Geometriya i grafika. - 2014. - T. 2. - № 2. - C. 3-8. - DOI:https://doi.org/10.12737/5583.

5. Girsh A.G. Naglyadnaya mnimaya geometriya [Tekst] /A.G. Girsh. - M.: Maska, 2008. - 216 s.

6. Girsh A.G. Novye zadachi nachertatel'noy geometrii [Tekst] / A.G. Girsh. // Geometriya i grafika. 2019. - T. 7. - №. 4. - C. 3-8. - DOI:https://doi.org/10.12737/5583.

7. Girsh A.G. O pol'ze mnimostey v geometrii [Tekst] / A.G. Girsh // Geometriya i grafika. - 2020. - T. 8. - № 2. - S. 33-40. - DOIhttps://doi.org/10.12737/2308-4898-2020-33-40.

8. Girsh A.G. Mnimye tochki v dekartovoy sisteme koordinat [Tekst] / A.G. Girsh, V.A. Korotkiy // Geometriya i grafika. - 2019. - T. 7. - №. 3. - C. 28-35. - DOIhttps://doi.org/10.12737/article_5dce651d80b827.49830821.

9. Grafskiy O.A. Vvedenie mnimyh elementov v nachertatel'nuyu geometriyu: monografiya [Tekst] / O.A. Grafskiy // Ros. Federaciya, M-vo putey soobsch., GOU VPO "Dal'nevost. gos. un-t putey soobsch. MPS Rossii". Habarovsk. - 2004. - 168 s.

10. Grafskiy O.A. Modelirovanie mnimyh elementov na ploskosti [Tekst]: monografiya / O.A. Grafskiy - Habarovsk: Izd-vo DVGUPS, 2004. - 161 s.

11. Grafskiy O.A. O vzaimnom peresechenii kvadrik s mnimym prodolzheniem [Tekst] / O.A. Grafskiy, V.G. Li // Izvestiya TRTU. 2004. - № 8 (43). - S. 249-253.

12. Ivanov G.S. O zadachah nachertatel'noy geometrii s mnimymi resheniyami [Tekst] / G.S. Ivanov, I.M. Dmitrieva // Geometriya i grafika. - 2015. - T. 3. - № 2. - C. 3-8. DOI:https://doi.org/10.12737/12163.

13. Kirillov A.A. Chto takoe chislo? [Tekst] / A.A. Kirillov - M.: Izd-vo Fizmatlit, 1993. - 80 s. - ISBN 5-02-014942-3.

14. Kleyn F. Vysshaya geometriya [Tekst] / F. Kleyn. - M.: URSS, 2004. - 400 s.

15. Kleyn F. Elementarnaya matematika s tochki zreniya vysshey [Tekst]. V 2 t. T. 2: Geometriya / F. Kleyn. - M.: Nauka, 1987. - 416 s.

16. Korotkiy V.A. Graficheskie algoritmy postroeniya kvadriki, zadannoy devyat'yu tochkami [Tekst] / V.A. Korotkiy // Geometriya i grafika. - 2019. - T. 7. - № 2. - C. 3-12. DOI:https://doi.org/10.12737/article_5d2c1502670779.58031440.

17. Korotkiy V.A. Komp'yuternaya vizualizaciya krivoy vtorogo poryadka, prohodyaschey cherez mnimye tochki i kasayuscheysya mnimyh pryamyh [Tekst] / V.A. Korotkiy // Nauchnaya vizualizaciya. - 2018. - T. 10. - № 1. - S. 56-68. DOI:https://doi.org/10.26583/sv.10.1.04.

18. Korotkiy V.A. Konicheskie secheniya v komp'yuternoy grafike [Tekst] / V.A. Korotkiy // Nauka YuUrGU materialy 70-y nauchnoy konferencii. Yuzhno-Ural'skiy gosudarstvennyy universitet. - 2018. - S. 105-109.

19. Korotkiy V.A. Mnimye lineynye elementy v algebre, geometrii i komp'yuternoy grafike [Tekst] / V.A. Korotkiy //Prikladnaya matematika i fundamental'naya informatika. - 2019. - T. 6. - № 2. - S. 34-48. DOI:https://doi.org/10.25206/2311-4908-2019-6-2-34-48.

20. Korotkiy V.A. Mnimye pryamye v dekartovoy sisteme koordinat [Tekst] / V.A. Korotkiy // Geometriya i grafika. - 2019. - T. 7. - № 4. - C. 5-17. DOI:https://doi.org/10.12737/2308-4898-2020-5-17.

21. Korotkiy V.A. Soprikosnovenie konicheskih secheniy [Tekst] / V.A. Korotkiy // Geometriya i grafika. - 2016. - T. 4. - № 3. - C. 36-45. DOI:https://doi.org/10.12737/21532.

22. Peklich V.A. Mnimaya nachertatel'naya geometriya: ucheb. posobie [Tekst] / V.A. Peklich. - M.: Izdatel'stvo associacii stroitel'nyh vuzov, 2007. - 104 s.

23. Saharova N.A. Sravnitel'nyy konstruktivnyy i analiticheskiy analiz transformacii kvadrik [Tekst] / N.A. Saharova, Yu.V. Ponomarchuk, O.A. Grafskiy // Sovremennaya nauka: novye podhody i aktual'nye issledovaniya Materialy Mezhdunarodnoy (zaochnoy) nauchno-prakticheskoy konferencii: pod red. A.I. Vostrecova. - 2018. - S. 41-45.

24. Suvorov F.M. Ob izobrazhenii voobrazhaemyh tochek i voobrazhaemyh pryamyh na ploskosti i o postroenii krivyh liniy vtoroy stepeni, opredelyaemyh s pomosch'yu voobrazhaemyh tochek i kasatel'nyh [Tekst] / F.M. Suvorov - Kazan': Tipografiya imperatorskogo Universiteta, 1884. - 130 s.

25. Florenskiy P.A. Mnimosti v geometrii: rasshirennye oblasti dvuhmernyh obrazov geometrii (opyt novogo istolkovaniya mnimostey). Izd. 2-e. [Tekst] / P.A. Florenskiy. - M.: Editorial URSS, 2004. - 72 s. - ISBN 5-354-00714-3/.

26. Yaglom I.M. Kompleksnye chisla i ih primenenie v geometrii. [Tekst] / I.M. Yaglom - M.: Editorial URSS, 2004. - 192 s.

27. Duden Rechnen und Mathematik: - Mannheim, Wien, Zürich: Dudenverlag, 2000. 720 p.

28. Girsch A. Ehtension of the 'Villarceau-Sektion' to Surfaces of Revolution with a Generating Sonis // Jurnal for Seometru and Graphics, 6(2000/2), r. 121-132.

29. Hirsch A. Extension of the 'Villarceau-Sektion' to Surfaces of Revolution with a Generating Conic // Jurnal for Geometriy and Graphics, V. 6 (2000), I. 2, pp. 121-132.

30. Stachel H.: Remarks on A. Hirsch's Paper conserning Villatceau-Sections. Jurnal for Geometriy and Graphics V. 6, (2002), pp.133-139

31. Reye Th. Geometrie der Lage. 1. Abteilung. - Leipzig, 1882, 215 S.

Login or Create
* Forgot password?