CONSTRUCTING A G2-SMOOTH COMPOUND CURVE BASED ON CUBIC BEZIER SEGMENTS
Abstract and keywords
Abstract (English):
The theory and practice of forming composite G2-smooth (two-continuously differentiable) curves, used in technical design since the mid-60s of the 20th century, is still not reflected in any way in the curriculum of technical universities or in Russian textbooks in engineering and computer graphics. Meanwhile, such curves are used in modeling a wide variety of geometric objects and physical processes. The article deals with the problem of constructing a composite G2-smooth curve passing through given points and touching at these points pre-specified straight lines. To solve the problem, cubic Bezier segments are used. The main problem in constructing a smooth compound curve is to ensure the continuity of curvature at the joints of the segments. The article shows that for parametrized cubic curves, this problem is reduced to solving a quadratic equation. A software module has been compiled that allows one to construct a plane G2-smooth curve passing through predetermined points and tangent at these points with predetermined straight lines. The shape of the curve (“completeness” of its segments) is adjusted by the user in the dialog mode of the program module. Solved the problem of constructing a cubic curve smoothly connecting unconnected Bezier segments. An algorithm for constructing a Bezier segment with given tangents and given curvature at its boundary points is proposed. Some properties of the cubic Bezier segment are considered. In particular, it was shown that for the case of parallel tangents, the curvature at the end of a segment is determined by the position of only one control point (Theorem 1). Cases are considered when the curvature at the ends of the Bezier segment is equal to zero (Theorem 2). An approximation of a three-point physical spline is performed using Bezier segments. The approximation error was less than 2%, which is comparable to the error in processing the experimental data. A method is proposed for modeling a spatial G2-smooth curve passing through points set in advance in space and touching at these points arbitrarily oriented lines in space. The article is of an educational nature and is intended for an in-depth study of the basics of computational geometry and computer graphics.

Keywords:
smoothness, parameterization, curvature, degree of freedom, physical spline
References

1. Voloshinov D. V. Konstruktivnoe geometricheskoe modelirovanie. Teoriya, praktika, avtomatizaciya: monografiya [Tekst] / D.V Voloshinov. - Saarbrucken: Lambert Academic Publishing, 2010. - 355 s.

2. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov / D.V. Voloshinov // Geometriya i grafika. - 2020. T. 8, № 2. - S. 3-32. - DOIhttps://doi.org/10.12737/2308-4898-2020-3-32

3. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie kak perspektiva prepodavaniya graficheskih disciplin [Tekst] / D.V. Voloshinov, K.N. Solomonov // Geometriya i grafika. - 2013. T. 1, № 2. - S. 10-13. - DOIhttps://doi.org/10.12737/778

4. Golovanov N.N. Geometricheskoe modelirovanie / N.N. Golovanov. - M.: Izd-vo fiziko-matematicheskoy literatury, 2012. - 472 s.

5. Zhermen-Lakur P. Matematika i SAPR / Zhermen-Lakur P., Zhorzh P. L., Pistr F., Bez'e P. - M.: Mir, 1989. - 264 s.

6. Zav'yalov Yu.S. Splayny v inzhenernoy geometrii / Yu.S. Zav'yalov, V.A. Leus, V.A. Skorospelov. - M.: Mashinostroenie, 1985. - 224 s.

7. Ivanov G.S. Teoreticheskie osnovy nachertatel'noy geometrii / G.S. Ivanov. - M.: Mashinostroenie, 1998. - 157 s.

8. Kurs nachertatel'noy geometrii (s uchetom principov programmirovannogo obucheniya) / pod red. N.F. Chetveruhina. - M.: Vysshaya shkola, 1968. - 266 s.

9. Konopackiy E.V. Vychislitel'nye algoritmy modelirovaniya odnomernyh obvodov cherez k napered zadannyh tochek / E.V. Konopackiy, A.A. Krys'ko, A.I. Bumaga // Geometriya i grafika. - 2018. T. 6, № 3. - S. 20-32. - doi.org/10.12737/article_5bc457ece18491.72807735

10. Korotkiy V.A. Kubicheskie krivye v inzhenernoy geometrii / V.A. Korotkiy // Geometriya i grafika. - 2020. T. 8, № 3. - S. 3-24. - DOI:https://doi.org/10.12737/2308-4898-2020-3-24

11. Korotkiy V.A. Soprikosnovenie konicheskih secheniy / V.A. Korotkiy // Geometriya i grafika. - 2016. T. 4, № 3. - S. 36-45. https://doi.org / 10.12737 / 21532

12. Lyubchinov E. V. O gladkosti stykovki liniy i poverhnostey pri ciklograficheskom modelirovanii poverhnostnyh form avtomobil'nyh dorog / E.V. Lyubchinov, K.L. Panchuk // Vestnik YuUrGU. Seriya “Stroitel'stvo i arhitektura”. - 2020. T. 20, № 1. - S. 52-62. DOI:https://doi.org/10.14529/build200106

13. Nazarova O.N. Sovremennye problemy prepodavaniya kursa “Prikladnaya geometriya i inzhenernaya grafika” dlya ekspluatacionnyh napravleniy aviacionnogo vuza / O.N.Nazarova // Geometriya i grafika. - 2020. T. 8, № 2. - S. 58-65. DOI:https://doi.org/10.12737/2308-4898-2020-58-65

14. Pontryagin L.S. Kubicheskaya parabola / L.S. Pontryagin // Nauchno-populyarnyy fiziko-matematicheskiy zhurnal «Kvant». - 1984. - №3. - S. 10-14, 32.

15. Popov E.P. Nelineynye zadachi statiki tonkih sterzhney / E.P. Popov. - M.: GITTL, 1948. - 172 s.

16. Prasolov V.V. Geometriya / V.V. Prasolov, V.M. Tihomirov. - M.: Izd-vo MCNMO, 2013. - 336 s.

17. Preparata F. Vychislitel'naya geometriya / F. Preparata, M. Sheymos. - M.: Mir, 1989. - 478 s.

18. Ryazanov S.A. Raschet koordinat modificirovannogo profilya proizvodyaschey poverhnosti zuboreznogo instrumenta / S.A. Ryazanov, M.K. Reshetnikov // Geometriya i grafika. - 2020. T. 8, № 4. - S. 35-46. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-35-46

19. Savelov A.A. Ploskie krivye / A.A. Savelov. - M.: Knizhnyy dom «Librokom», 2009. - 296 s.

20. Savel'ev Yu.A. Vychislitel'naya grafika v reshenii netradicionnyh inzhenernyh zadach / Yu.A. Savel'ev, E.Yu. Cherkasova // Geometriya i grafika. - 2020. T. 8, № 1. - S. 33-44. - doi.org/10.12737/2308-4898-2020-33-44

21. Sal'kov N.A. Geometricheskaya sostavlyayuschaya tehnicheskih innovaciy / N.A. Sal'kov // Geometriya i grafika. - 2018. T. 6, № 2. - S. 85-93. - doi.org/10.12737/article_5b55a5163fa053.07622109

22. Sal'kov N.A. Kachestvo geometricheskogo obrazovaniya pri razlichnyh podhodah k metodike obucheniya / N.A. Sal'kov // Geometriya i grafika. - 2020. T. 8, № 4. - S. 47-60. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-47-60

23. Sal'kov N.A. Fenomen prisutstviya nachertatel'noy geometrii v drugih uchebnyh disciplinah / N.A. Sal'kov, N.S. Kadykova // Geometriya i grafika. - 2020. T. 8, № 4. - S. 61-73. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-61-73

24. Smogorzhevskiy A.S. Spravochnik po teorii ploskih krivyh tret'ego poryadka / A.S. Smogorzhevskiy, E.S. Stolova. - M.: F-M., 1961. - 263 s.

25. Suhih B.I. Vychislitel'naya geometriya. Osnovnye ob'ekty i preobrazovaniya: uchebnoe posobie / B.I. Suhih, R.A. Vaysburd. - Ekaterinburg, izd-vo UPI, 1989. - 92 s.

26. Usataya T.V. Sovremennye podhody k proektirovaniyu izdeliy v processe obucheniya studentov komp'yuternoy grafike / T.V. Usataya, L.V. Deryabina, E.S. Reshetnikova // Geometriya i grafika. - 2019. T. 7, № 1. - S. 74-82. - doi.org/10.12737/article_5c91fd2bde0ff7.07282102

27. Uoker, R. Algebraicheskie krivye / R. Uoker. - M.: Knizhnyy dom «Librokom», 2009. - 240 s.

28. Foks A. Vychislitel'naya geometriya. Primenenie v proektirovanii i na proizvodstve / A. Foks, M. Pratt. - M., Mir, 1982. - 304 s.

29. Shikin E.V. Krivye i poverhnosti na ekrane komp'yutera / E.V. Shikin, L.I. Pliss. - Dialog-MIFI, 1996. - 240 s.

30. Glaeser, G. Geometrie und ihre Anwendungen in Kunst, Natur und Technik / G. Glaeser. - Springer Spektrum, 2014. - 508 pp. DOIhttps://doi.org/10.1007/978-3-642-41852-5

Login or Create
* Forgot password?