FORCE BALANCE IN CURRENT SHEETS IN COLLISIONLESS PLASMA
Abstract and keywords
Abstract (English):
In this paper, we derive a divergent form of the force balance equation for collisionless plasma in the quasineutrality approximation, in which the electric field and current density are excluded. For a stationary spatially one-dimensional current sheet with a constant normal component of the magnetic field and magnetized electrons, the general form of the force balance equation has been obtained for the first time in the form of a conservation law. An equation in this form is necessary for the correct formulation of boundary conditions when modeling asymmetric current sheets, as well as for the control of the stationarity of the numerical solution obtained in the model. Furthermore, the fulfillment of this equation is considered for two types of stationary configurations of a thin current sheet, which are obtained using a numerical model. The derived equation makes it possible to develop models of asymmetric current sheets, in particular current sheets on the magnetopause flanks in the magnetotail.

Keywords:
collisionless plasma, Vlasov equation, current sheet, numerical simulation, Earth’s magnetosphere, magnetized electrons
Text
Publication text (PDF): Read Download
References

1. Arons J. A tale of two current sheets. High-energy emission from pulsars and their systems. Part of the Astrophysics and Space Science Proceedings book series (ASSSP). Springer Verlag Berlin Heidelberg, 2011, p. 165.

2. Artemyev A.V. A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Physics of Plasmas. 2011, vol. 18, p. 022104. DOI:https://doi.org/10.1063/1.3552141.

3. Artemyev A.V., Zelenyi L.M., Kinetic structure of current sheets in the Earth magnetotail. Space Sci. Rev. 2013, vol. 178, iss. 2-4, pp. 419–440. DOI:https://doi.org/10.1007/s11214-012-9954-5.

4. Artemyev A.V., Petrukovich A.A., Frank A.G., Nakamura R., Zelenyi L.M. Intense current sheets in the magnetotail: Peculiarities of electron physics. J. Geophys. Res. 2013, vol. 118, pp. 2789–2799. DOI:https://doi.org/10.1002/jgra.50297.

5. Artemyev A.V., Vasko I.Yu., Kasahara S. Thin current sheets in the Jovian magnetotail. Planetary and Space Sci. 2014, vol. 96, pp. 133–145. DOI:https://doi.org/10.1016/j.pss.2014.03.012.

6. Ashour-Abdalla M., Zelenyi L.M., Peroomian V., Richard R.L. Consequences of magnetotail ion dynamics. J. Geophys. Res. 1994, vol. 99, no. A8, pp. 14891–14916. DOI:https://doi.org/10.1029/94JA00141.

7. Baumjohann W. Roux A., Le Contel O. et al., Dynamics of thin current sheets: Cluster observations. Ann. Geophys. 2007, vol. 25, iss. 6, pp. 1365–1389. DOI:https://doi.org/10.5194/angeo-25-1365-2007.

8. Bykov A.A., Zelenyi L.M., Malova Kh.V. Triple splitting of a thin current sheet: A new type of plasma equilibrium. Plasma Phys. Rep. 2008, vol. 34, no. 2, pp. 128–134. DOI:https://doi.org/10.1007/s11452-008-2005-5.

9. Bykov A.A., Ermakova K.E. A self-consistent model for the electronic component of a thin current sheet in the Earth’s magnetosphere. Moscow University Physics Bull. 2016, vol. 71, pp. 43–51.

10. Frank A.G., Artemyev A.V., Zelenyi L.M. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect. J. Exp. Theor. Phys. 2016, vol. 123, pp. 699–715. DOI:https://doi.org/10.1134/S1063776116090119.

11. Grigorenko E.E., Malova H.V., Malykhin A.Y., Zelenyi L.M. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail. Plasma Phys. Rep. 2015, vol. 41, pp. 88–101. DOI:https://doi.org/10.1134/S1063780X1501002X.

12. Harris E.G. On a Plasma sheath separating regions of oppositely directed magnetic fields. Il Nuovo Cimento. 1962, vol. 23, iss. 1, pp. P. 115–119.

13. Ilgisonis V.I. Guiding-center theory for three-dimensional collisionless finite Larmor radius plasmas. Phys. Fluids B.: Plasma Phys. 1993, vol. 5, iss. 7, p. 2387. DOI:https://doi.org/10.1063/1.860722.

14. Kalsrud R. Fundamentals of Plasma Physics. Ed. A.A. Galeev, R. Sudan. Moscow: Energoatomizdat, 1983. vol. 1, pp. 122–152. (In Russian).

15. Kocharovsky V.V., Martyanov V Yu, Tarasov S.V. Analytical theory of self-consistent current structures in a collisionless plasma. Physics-Uspekhi, 2016, vol. 59, no. 12, pp. 1165–1210. DOI: 10.1134/ S1063773719080048.

16. Kocharovsky V.V., Kocharovsky Vl.V., Martyanov V.Y., Nechaev A.A. An analytical model for the current structure of the magnetosheath boundary in a collisionless plasma. Astronomy Lett. 2019, vol. 45, iss. 8, pp. 551–564. DOI: 10.1134/ S1063773719080048.

17. Kropotkin A.P., Lui A.T.Y. Quasi-static evolution of the magnetosphere: The substorm growth phase. J. Geophys. Res. 1995, vol. 100, iss. A9, pp. 17231–17240. DOI:https://doi.org/10.1029/95JA00792.

18. Malova H.V., Mingalev O.V., Grigorenko E.E., Mingalev I.V., Melnik M.N., Popov V.Y., et. al. Formation of self-organized shear structures in thin current sheets. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 4802–4824. DOI: 10.1002/ 2014JA020974.

19. Malova H.V., Popov V.Yu., Grigorenko E.E., Petrukovich A.A., Delcourt D., Sharma A.S., et al. Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind. Astrophys. J. 2017, vol. 834, no. 1, p. 34. DOI:https://doi.org/10.3847/1538-4357/834/1/34.

20. Mingalev O.V., Mingalev I.V., Mel’nik M.N., Artemyev A.V., Malova H.V., Popov V.Yu., et al. Kinetic models of current sheets with a sheared magnetic field. Plasma Phys. Rep. 2012, vol. 38, pp. 300–314. DOI:https://doi.org/10.1134/S1063780X12030063.

21. Mingalev O.V., Malova H.V., Mingalev I.V., Mel’nik M.N., Setsko P.V., Zelenyi L.M. Model of a thin current sheet in the Earth’s Magnetotail with a kinetic description of magnetized electrons. Plasma Phys. Rep. 2018, vol. 44, pp. 899–919. DOI:https://doi.org/10.1134/S1063780X18100082.

22. Mingalev O.V., Mingalev I.V., Malova H.V., Merzlyi A.M., Mingalev V.S., Khabarova O.V. Description of large-scale processes in the near-Earth space plasma. Plasma Phys. Rep. 2020, vol. 46, pp. 374–395. DOI:https://doi.org/10.1134/S1063780X20030083.

23. McPherron R.L., Nishida A., Russell C.T. Is near-Earth current sheet thinning the cause of auroral substorm onset? Quantitative Modeling of Magnetosphere-Ionosphere Coupling Processes. Ed. by Y. Kamide, R.A. Wolf. Kyoto Sangyo University: Kyoto, Japan, 1987, pp. 252–265.

24. Morozov A.I., Solovyov L.S. Questions of the Theory of Plasma. Ed. M.A. Leontovich. Moscow, Gosatomizdat, 1963, iss. 2, pp. 177–255. (In Russian).

25. Rudakov L.I. Sagdeev R.Z. Plasma Physics and the Problem of Controlled Thermonuclear Reactions. Ed. M.A. Leontovich. Moscow, Academy of Sciences of the USSR Publ., 1958, vol 3, 268 p. (In Russian).

26. Runov A., Sergeev V.A., Nakamura R., Baumjohann W., Apatenkov S., Asano Y., et al. Local structure of the magnetotail current sheet: 2001 Cluster observations. Ann. Geophys. 2006, vol. 24, iss. 1, pp. 247–262. DOI:https://doi.org/10.5194/angeo-24-247-2006.

27. Sergeev V.A., Mitchell D.G., Russell C.T., Williams D.J. Structure of the tail plasma/current sheet at 11RE and its changes in the course of a substorm. J. Geophys. Res. 1993, vol. 98, pp. 17345–17365. DOI:https://doi.org/10.1029/93JA01151.

28. Sergeev V.A., Pulkkinen T.I., Pellinen R.J. Coupled-mode scenario for the magnetospheric dynamics. J. Geophys. Res. 1996, vol. 101, iss. A6, pp. 13047–13066. DOI:https://doi.org/10.1029/95JA03192.

29. Sitnov M.I., Zelenyi L.M., Malova H.V. Sharma A.S. Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory. J. Geophys. Res. 2000, vol. 105, no. A6, pp. 13029–13044. DOI:https://doi.org/10.1029/1999JA000431.

30. Somov B.V. Verneta A.I. Tearing instability of reconnecting current sheets in space plasmas. Space Sci. Rev. 1993, vol. 65, pp. 253–288. DOI:https://doi.org/10.1007/BF00754510.

31. Speiser T.W., Particle trajectories in model current sheets; 1. Analytical solutions. J. Geophys. Res. 1965, vol. 70, pp. 4219–4226.

32. Volkov T.F. Hydrodynamic description of a highly rarefied plasma. Questions of the Theory of Plasma. Ed. M.A. Leontovich. M: Gosatomizdat, 1964, vol. 4, pp. 3–19. (In Russian).

33. Zelenyi L.M., Malova H.V., Popov V.Yu. Delcourt D., Sharma A.S. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy. Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 2004, vol. 11, no. 5/6, pp. 579–587.

34. Zelenyi, L.M., Malova, H.V., Artemyev, A.V., Popov V.Yu., Petrukovich A.A. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Rep. 2011, vol. 37, pp. 118–160. DOI:https://doi.org/10.1134/S1063780X1102005X.

35. Zelenyi L.M., Malova H.V., Grigorenko E.E., Popov V.Yu. Thin current sheets: from Ginzburg—Syrovatsky up to the present days. Physics-Uspekhi. 2016, vol. 59, iss. 11, pp. 1057–1090. DOI:https://doi.org/10.3367/UFNe.2016.09.037923.

Login or Create
* Forgot password?