FRACTAL PLOTS OF TOPOLOGY OPTIMIZATION EFFICIENCY IN SOLVING OF THE PROBLEM FOR STRENGTH DEPENDENCE ON THE GRID
Abstract and keywords
Abstract (English):
In this research is solved the problem for determining of dependencies describing the strength redundancy of a part obtained by means of topology optimization using the SIMP method under a variety of grid’s finite elements. For this purpose, in the research was performed a digital experiment, during which almost fifty variants of part’s computer models were obtained, and their mechanical properties were studied. Based on the obtained data were constructed plots for the strength efficiency of topological optimization, which reflect fractal properties of part’s strength parameters changing. Upon reaching the research goal were solved the problems of software selection and applying a programs combination, which allowed automate the creation of models based on the topology optimization results. The main tool for topology optimization was the Autodesk Fusion 360 product, providing a free access to cloud computing, and Autodesk ReCap Photo was used when models converting. On the results of the experiment were formulated recommendations for obtaining the part’s optimized topology without critical defects of shape, using the SIMP method. With great probability, these recommendations are important when using other methods for topological optimization, such as ESO, BESO, or Level-Set. The received recommendations were tested in solution the problem of increasing the structures’ strength efficiency on the example of the rocker-Bogie wheel suspension using in modern Curiosity-type Mars rovers. The topology optimization results are openwork parts that can withstand heavy loads at low weight. This was confirmed by strength analysis, which had showed an increase in specific strength up to 13.5 times, relative to the prototype used in the Curiosity-type Mars rover’s suspension.

Keywords:
topology optimization, finite elements, SIMP-method, fractal plots of strength efficiency
References

1. Bashin K.A., Torsunov R.A., Semenov S.V. Metody topologicheskoj optimizacii konstrukcij, primenyayushchiesya v aerokosmicheskoj otrasli [Methods of topological optimization of structures used in the aerospace industry] Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika [Bulletin of the Perm National Research Polytechnic University. Aerospace Engineering]. 2017, I. 4, 51 p. (in Russian)

2. Beglov I.A., Rustamyan V.V., Antonova I.V. Matematicheskoe opisanie metoda vrashcheniya tochki vokrug krivolinejnoj osi vtorogo poryadka [Mathematical description of the method of rotation of a point around a curvilinear axis of the second order] Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 4, pp. 39-46. DOI:https://doi.org/10.12737/article_5c21f6e832b4d2.25216268. (in Russian)

3. Boldyrev A.V. Topologicheskaya optimizaciya silovyh konstrukcij na osnove modeli peremennoj plotnosti [Topological optimization of power structures based on a variable density model]. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk [Bulletin of the Samara Scientific Center of the Russian Academy of Sciences]. 2011, V. 13, I. 3. (in Russian)

4. Bulychev R.N., Ayusheev T.V. Opisanie processa deformirovaniya listovogo materiala s ispol'zovaniem parametricheskogo tverdotel'nogo modelirovaniya [Description of the process of deformation of sheet material using parametric solid modeling]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 1, pp. 48-56. DOI:https://doi.org/10.12737/article_5ad09a84cbd105.88047545. (in Russian)

5. Grafsky O.A., Ponomarchuk Yu.V., Kholodilov A.A. Geometriya elektrostaticheskih polej [Geometry of electrostatic fields]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 10-19. DOI:https://doi.org/10.12737/article_5ad085a6d75bb5.99078854. (in Russian)

6. Grebenshchikova T.D. Krasnova M.N. Osobennisti 3d-petchati iz titana [Feature of 3D printing from titanium]. Physics and mathematics [Physics and mathematics]. 2019, 36 p. (in Russian)

7. Zhikharev L.A. Fraktal'nye razmernosti [Fractal dimensions]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 33-48. DOI: 10.12737 / article_5bc45918192362.77856682. (in Russian)

8. Kozlova I. A. Primenenie nailuchshego ravnomernogo priblizheniya k analizu fraktal'nyh modelej [Application of the best uniform approximation to the analysis of fractal models]. Sovremennye naukoemkie tekhnologii. Regional'noe prilozhenie [Modern high technology. Regional application.]. 2015, I. 1, 41 p. (in Russian)

9. Loginov Yu. N. Stepanov S.I., Dub V.A., Naschetnikova I.A. Kachestvo tonkih elementov yacheistyh struktur iz titana, poluchennyh metodom selektivnogo lazernogo plavleniya [The quality of thin elements of cellular structures made of titanium obtained by selective laser melting]. Liteyshchik Rossii [Foundry of Russia]. 2019, I. 4, pp. 27-31. (in Russian)

10. Loginov Yu. N. Stepanov S.I., YUdin A.V., Tret'yakov E.V. Sootnosheniya mekhanicheskih svojstv i plotnosti dlya titana, poluchennogo additivnym metodom [Ratios of mechanical properties and density for titanium obtained by the additive method]. Tsvetnye metally [Non-ferrous metals]. 2018, I. 5, pp. 51-55. (in Russian)

11. Lysych M.N., Shabanov M.L., Vorontsov R.V. Materialy, dostupnye v ramkah razlichnyh tekhnologij 3d pechati [Materials available in the framework of various technologies of 3d printing]. Sovremennyr naukojomkie tehnologii [Modern science-intensive technologies]. 2015, I. 5, pp. 20-25. (in Russian)

12. Markin L. V. Diskretnye geometricheskie modeli ocenki stepeni zatenennosti v gelioenergetike [Discrete geometric models for estimating the degree of shadowing in solar energy]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 28-45. DOI:https://doi.org/10.12737/article_5c9202d8d821b0.81468033. (in Russian)

13. Plaksin A.M., Pushkarev S.A. Geometricheskoe modelirovanie teplovyh harakteristik ob"ektov funkcional'no-voksel'nym metodom [Geometric modeling of thermal characteristics of objects by the functional-voxel method]. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 1, pp. 25-32. DOI:https://doi.org/10.12737/2308-4898-2020-25-32. (in Russian)

14. Reshetnikov M.K., Ryazanov S.A. Ocenka parametrov chervyachnyh peredach na osnove metodov 3D komp'yuternoj grafiki [Evaluation of worm gear parameters based on 3D computer graphics methods]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 34-38. DOI:https://doi.org/10.12737/article_5ad0971a86af78.65167837. (in Russian)

15. Saveliev Yu. A., Cherkasova E. Yu. Vychislitel'naya grafika v reshenii netradicionnyh inzhenernyh zadach [Computational graphics in solving non-traditional engineering problems]. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 1, pp. 33-44. DOI:https://doi.org/10.12737/2308-4898-2020-33-44. (in Russian)

16. Teplov A. A., Maykov K. A. Metod formirovaniya stohasticheskih fraktal'nyh struktur [Method for the formation of stochastic fractal structures]. Novye informacionnye tekhnologii v avtomatizirovannyh sistemah [New information technologies in automated systems], 2019, I. 22. (in Russian)

17. Bruns T. E. A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Structural and Multidisciplinary Optimization, 2005, V. 30, I. 6, pp. 428-436.

18. Edgett, K.S. Yingst R.A., Ravine M.A. et al. Space. Sci Rev, 2012, pp. 170 - 259. DOI:https://doi.org/10.1007/s11214-012-9910-4.

19. Ferrer A. SIMP-ALL: A generalized SIMP method based on the topological derivative concept. International Journal for Numerical Methods in Engineering, 2019, V. 120, I. 3, pp. 361-381.

20. Ferro N. Topology optimization: advanced techniques for new challenges, Italy, 2019. (Doctoral dissertation).

21. Florio, C.S. Selection of the scaling factor in finite element-based gradientless shape optimization for a consistent step size. Struct Multidisc Optim, 2019, I. 59, pp. 713-730 DOI: https://doihttps://doi.org/10.1007/s00158-018-2092-2.

22. Golmankhaneh A. K., Tunç C. Stochastic differential equations on fractal sets Stochastics, 2019, pp. 1-17.

23. Hu, S., Chen L., Zhang Y. et al. A crossing sensitivity filter for structural topology optimization with chamfering, rounding, and checkerboard-free patterns. Struct Multidisc Optim, 2009, no. 37, pp. 529-540 DOI: https://doi.org/10.1007/s00158-008-0246-3.

24. Jaskulski A. Autodesk Inventor Professional Fusion 360+, design methodology. Polish Scientific Publishers PWN, 2018, pp. 32 - 56.

25. Kurowski Paul M., Engineering Analysis with SolidWorks Simulation. SDC publications, 2013, 489 p.

26. Li J. A meshless method for topology optimization of structures under multiple load cases. Elsevier, 2020, V. 25, pp. 173-179. DOI:https://doi.org/10.1016/j.istruc.2020.03.005.

27. Liu C. et al. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Structural and Multidisciplinary Optimization, 2018, V. 58, I. 6, pp. 2455-2479.

28. Lopes S. R. et al. Parameter-free quantification of stochastic and chaotic signals. Chaos, Solitons & Fractals, 2020, V. 133, pp. 109 - 616.

29. Mars Microrover Power Subsystem. Jet Propulsion Laboratory. Available at: https://mars.jpl.nasa.gov/MPF/roverpwr/power.html (accessed 19 May 2020).

30. Martin, P. K. NASA’S management of the mars science laboratory project (IG-11-019). Office of inspector general. Available at: https://oig.nasa.gov/audits/reports/FY11/IG-11-019.pdf (accessed 19 May 2020).

31. Maurice, S., Wiens R.C., Saccoccio M. et al. Space Sci. Rev, 2012, pp. 95 -170. DOI:https://doi.org/10.1007/s11214-012-9912-2.

32. Micheletti S., Perotto S., Soli L. Topology optimization driven by anisotropic mesh adaptation: Towards a free-form design. Computers & Structures, 2019, V. 214, pp. 60-72.

33. Nomura T. Inverse design of structure and fiber orientation by means of topology optimization with tensor field variables. Composites Part B: Engineering, 2019, V. 176, pp. 107 - 187.

34. Pimanov V., Oseledets I. Robust topology optimization using a posteriori error estimator for the finite element method. Struct Multidisc Optim, 2018, V. 58, pp. 1619-1632 DOI:https://doi.org/10.1007/s00158-018-1985-4.

35. Salimi H. Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based Systems, 2015, V. 75, pp. 1-18.

36. Sapidis, N.S. Geometric modeling of spatial constraints: objectives, methods and solid-modeling requirements. Computing, 2007, V. 79, pp. 337-352 DOI:https://doi.org/10.1007/s00607-006-0210-2.

37. Schryen G. Parallel computational optimization in operations research: A new integrative framework, literature review and research directions. European Journal of Operational Research. Elsevier, 2019, pp. 1-18. DOI:https://doi.org/10.1016/j.ejor.2019.11.033.

38. Sigmund O., Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 1998, V. 16, pp. 68-75. DOI:https://doi.org/10.1007/BF01214002.

39. Simionescu P. A. Computer-aided graphing and simulation tools for AutoCAD users. CRC Press, 2014, V. 32, 312 p.

40. Stolarski T., Nakasone Y., Yoshimoto S. Engineering analysis with ANSYS software. Butterworth-Heinemann, 2018, 542 p.

41. Xia L. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Archives of Computational Methods in Engineering, 2018, V. 25, I. 2, pp. 437-478.

Login or Create
* Forgot password?