In this paper the influence of objects’ thermal processes on their correspondence to a given geometry has been considered, and an alternative apparatus for geometric modeling of bodies’ temperature stress and thermal expansion after effect of a heat source, based on a functional-voxel approach, has been proposed as well. A discrete geometric model of temperature stress at a point of thermal loading in an isotropic heat-conducting body for a functional-voxel representation has been developed, allowing simulate a single action of a heat source to obtain local geometric characteristics of thermal stress in the body. This approach, unlike traditional approaches based on the FEM, allows apply the temperature load at the object’s point taken by itself. A discrete geometric model for expansion at the point of thermal loading in an isotropic heat-conducting body for a functional-voxel representation has been developed, which allows simulate the change of an object’s local geometric characteristics during the process of material expansion from a single effect of a heat source to obtain a value upon the body volume changing. This approach, unlike traditional approaches based on the FEM, allows simulate a change in the body’s surface geometry from thermal expansion at a point taken by itself without errors arising from calculations using a mesh. Have been proposed algorithms for functional-voxel modeling of temperature stress and expansion under distributed thermal loading. These algorithms allow construct a loading region of complex configuration based on the spatial distribution and scaling of the temperature stress’s geometric model for a single point of thermal loading, uniformly form a contour (surface) after material expansion, and obtain information about the change in products’ length (volume) based on information about each point of functional space. Has been presented an example of using the proposed approach for solving a processing tool’s correction problem based on the temperature in the cutting zone and material thermal reaction. The geometric model can be used to the automated design of a processing tool path for parts cutting on CNC machines.
discrete geometric model, finite element method (FEM), functional voxel method (FVM), temperature stress, thermal expansion, tool path correction
1. Alyamovskij A.A. SolidWorks Simulation. Inzhenernyj analiz dlya professionalov: zadachi, metody, rekomendacii [SolidWorks Simulation. Engineering analysis for professionals: tasks, methods, recommendations]. Moscow, 2015. 562 p. (in Russian)
2. Volkov D.I., Kozhina S.M. Raschet temperaturnogo polya v rezhushchem kline pri nestacionarnom teplovom processe [Calculation of the temperature field in the cutting wedge in a non-stationary thermal process]. Vestnik Rybinskoj gosudarstvennoj aviacionnoj tekhnologicheskoj akademii im. P.A. Solov'eva [Bulletin of the Rybinsk state aviation technological Academy. P.A. Solovyov]. 2017, I. 9, pp. 114-121. (in Russian)
3. Volkov D.I., Proskuryakov S.L. Teplovye processy pri vysokoskorostnom tochenii trudnoobrabatyvaemyh materialov i ih vliyanie na optimal'nuyu skorost' rezaniya [Thermal processes in high-speed turning of hard-to-process materials and their influence on the optimal cutting speed]. Vestnik Rybinskoj gosudarstvennoj aviacionnoj tekhnologicheskoj akademii im. P.A. Solov'eva [Bulletin of the Rybinsk state aviation technological Academy. P.A. Solovyov]. 2012, I. 2, pp. 211-215. (in Russian)
4. Zhambalova S.B. R-funkcii v matematicheskom modelirovanii geometricheskih ob"ektov [R-functions in mathematical modeling of geometric objects]. Materialy 1 go tura Mezhdunarodnoj studencheskoj nauchno-prakticheskoj konferencii «Avtomatizaciya i informacionnye tekhnologii» [Materials of the 1st round of the International student scientific and practical conference «Automation and information technologies»]. 2019, p. 27. (in Russian)
5. ZHukov N.P., Majnikova N.F., Nikulin S.S., Antonov O.A. Reshenie zadach teploprovodnosti metodom konechnyh elementov [Solving problems of thermal conductivity by the finite element method]. Tambov, 2014. 80 p. (in Russian)
6. Ivanov V.N., Krivoshapko S.N., Romanova V.A. Osnovy razrabotki i vizualizacii ob"ektov analiticheskih poverhnostej i perspektivy ih ispol'zovaniya v arhitekture i stroitel'stve [Fundamentals of the development and visualization of objects of analytical surfaces and the prospects for their use in architecture and construction]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 3-14. DOI:https://doi.org/10.12737/article_5a17f590be3f51.37534061. (in Russian)
7. Korotkij V.A., Usmanova E.A. Krivye vtorogo poryadka na ekrane komp'yutera [Second-order curves on a computer screen]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2, pp. 100-112. DOI:https://doi.org/10.12737/article_5b55a829cee6c0.74112002. (in Russian)
8. Kravchenko V.F., Kravchenko O.V., Churikov D.V. Primenenie R-funkcij, atomarnyh i Wa-sistem funkcij v informacionnyh tekhnologiyah. Obzor [Application of R-functions, atomic and Wa-systems of functions in information technologies. Review]. Aktual'nye problemy sovremennogo obrazovaniya [Current problems of modern education]. 2018, V. 2, pp. 13-23. (in Russian)
9. Loktev M.A. Osobennosti primeneniya funkcional'no-voksel'nogo modelirovaniya v zadachah poiska puti s prepyatstviyami [Features of application of functional voxel modeling in problems of finding a path with obstacles]. Informacionnye tekhnologii v proektirovanii i proizvodstve [Information technologies in design and production]. 2016, I. 1, pp. 45-49. (in Russian)
10. Lyashkov A.A., Panchuk K.L., Varepo L.G. Osobennost' otobrazheniya giperpoverhnosti chetyrekhmernogo prostranstva [Peculiarities of the hypersurface mapping of four-dimensional space]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 3-10. DOI:https://doi.org/10.12737/article_59bfa3078af4c1.45321238. (in Russian)
11. Markin L.V. Diskretnye geometricheskie modeli ocenki stepeni zatenennosti v gelioenergetike [Discrete geometric models for estimating the degree of shadowing in solar energy]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 28-45. DOI:https://doi.org/10.12737/article_5c9202d8d821b0.81468033. (in Russian)
12. Panchuk K.L., Myasoedova T.M., Krysova I.V. Geometricheskaya model' generacii semejstva konturno-parallel'nyh linij dlya avtomatizirovannogo rascheta traektorii rezhushchego instrumenta [Geometric model of generating a family of contour-parallel lines for automated calculation of the trajectory of a cutting tool]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 3-13. DOI:https://doi.org/10.12737/article_5c92012c51bba1.17153893. (in Russian)
13. Plaksin, A.M., Sycheva A.A. Modelirovanie teplovyh harakteristik na osnove funkcional'no-voksel'noj modeli s predvaritel'nym opredeleniem kontura obhoda [Modeling of thermal characteristics based on a functional voxel model with a preliminary definition of the bypass contour]. Trudy 13-go Vserossijskogo soveshchaniya po problemam upravleniya [Proceedings of the 13th all-Russian meeting on management issues]. 2019, pp. 3179-3185. (in Russian)
14. Plaksin, A.M., Sycheva A.A. Funkcional'no-voksel'noe modelirovanie teplovyh harakteristik [Functional voxel modeling of thermal characteristics]. Tezisy 18-j Mezhdunarodnoj molodezhnoj konferencii «Sistemy proektirovaniya, tekhnologicheskoj podgotovki proizvodstva i upravleniya etapami zhiznennogo cikla promyshlennogo produkta» [Abstracts of the 18th international youth conference «Systems of design, technological preparation of production and management of stages of the life cycle of an industrial product»]. 2018, pp. 36-36. (in Russian)
15. Rvachev V.L. Teoriya R-funkcij i nekotorye ee prilozheniya [Theory of R-functions and some of its applications]. Kiev, 1982. 552 p. (in Russian)
16. Reznikov A.N. Teplovye processy v tekhnologicheskih sistemah. Uchebnik dlya vuzov [Thermal processes in technological systems. Textbook for universities]. Moscow, 1990. 288 p. (in Russian)
17. Ryazanov S.A. Geometricheskaya model' proizvodyashchej poverhnosti, ekvivalentnoj rabochej poverhnosti zuboreznogo instrumenta «CHervyachnaya freza» [Geometric model of the producing surface, equivalent to the working surface of the gear cutting tool «Worm Cutter»]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 2, pp. 56-60. DOI:https://doi.org/10.12737/article_5d2c24f391d6b6.68532534. (in Russian)
18. Salnikov V.S., Hoang Vai Chi. Matematicheskaya model' teplovyh processov v zone rezaniya [Mathematical model of thermal processes in the cutting]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Proceedings of the Tula state University. Technical science]. 2012, I. 5, pp. 56-62. (in Russian)
19. Skuratov D.L., Balyakin A.V., Apkarimova Yu. Kh. Analiticheskoe reshenie zadachi po raschetu temperaturnogo polya v obrabatyvaemyh zagotovkah pri lentochnom shlifovanii [Analytical solution of the problem of calculating the temperature field in processed blanks during belt grinding]. Izvestiya Samarskogo nauchnogo centra RAN [Izvestiya Samara scientific center of the Russian Academy of Sciences]. 2019, I. 1, pp. 95-104. (in Russian)
20. Sultanov L.U., Davydov R.L. CHislennoe issledovanie bol'shih deformacij metodom konechnyh elementov [Numerical investigation of large deformations by the finite element method]. Inzhenerno-stroitel'nyj zhurnal. [Engineering and construction magazine]. 2013, I. 9, pp. 64-68. (in Russian)
21. Tolok A.V. Graficheskie obrazy-modeli v informacionnyh tekhnologiyah [Graphic images-models in information technologies]. Prikladnaya informatika [Applied informatics]. 2009, I. 4, pp. 31-40. (in Russian)
22. Tolok A.V. Primenenie voksel'nyh modelej v processe avtomatizacii matematicheskogo modelirovaniya [Application of voxel models in the process of mathematical modeling automation]. Avtomatika i telemekhanika [Automation and remote control]. 2009, I. 6, pp. 167-180. (in Russian)
23. Tolok A.V. Sintez komp'yuternyh obrazov geometricheskih harakteristik dlya ocenki rel'efa poverhnosti funkcii dvuh peremennyh [Synthesis of computer images of geometric characteristics for estimating the surface relief of a function of two variables]. Zbіrnik dopovіdej NAN Ukraini. Matematika, prirodoznavstvo, tekhnіchnі nauki [Collection of reports of the national Academy of Sciences of Ukraine. Mathematics, natural science, technical Sciences]. 2004, I. 4, pp. 63-69. (in Russian)
24. Tolok A.V. Funkcional'no-voksel'nyj metod v komp'yuternom modelirovanii [Functional voxel method in computer modeling]. Moscow, 2016. 112 p. (in Russian)
25. Gustafson R.J., Thompson D.R., Sokhansanj S. Temperature and stress analysis of corn kernel-finite element analysis. [Transactions of the ASAE]. 1979, V. 22, I. 4, pp. 955-960.
26. Rvachev V.L., Tolok A.V., Uvarov R.A., Sheiko T.I. New Apparoaches to Generating Equations of the Three-dimensional Loci Using R-functions. [Vestn. Zaporozh. Gos. Univ.]. 2000, I. 2, pp. 119-131.
27. Tolok A.V., Myl’tsev A.M., Korogod V.L. An Algorithm of Spatial Motion along a Gradient on the Basis of M images. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. 2007, V. 77, pp. 85-90.
28. Tolok A.V., Tolok N.B., Loktev M.A. Modeling Function Domain for Curves Constructed Based on a Linear Combination of Basis Bernstein Polynomials. [Programming and Computer Software]. 2018, V. 44, I. 6, - pp. 526-532.
29. Zain A.M., Haron H., Sharif S. Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. [Expert Systems with Applications]. 2010, V. 37, I. 6, pp. 4650-4659.