from 01.01.2004 to 01.01.2019
Omsk, Omsk, Russian Federation
Omsk, Russian Federation
Omsk, Omsk, Russian Federation
from 01.01.2018 until now
During planning the movement of an android robot arm in an organized space, there is a need in reducing calculation time of the trajectory in the space of generalized coordinates. The indicated time significantly depends on calculation time the vector of increments of the generalized coordinates at each step of calculations in the synthesis of movements along the velocity vector. In this paper, geometric studies were carried out based on the visualization of patterns of changes in the average displacement of the nodal points of the hand mechanism of an android robot while implementing instantaneous states. On the basis of the geometric analysis of the indicated displacements, a method is proposed which makes it possible to reduce the time of iterative search for the increment vector of generalized coordinates. Also images are shown of multiple positions of arm mechanism links on the frontal and horizontal projections when implementing instantaneous states. This images allows to make a graphic interpretation of manipulator mechanism maneuverability at each point of the configuration space. Hypersurfaces in four-dimensional space are used to establish the analytical dependencies reflecting the relationship of the average displacement of manipulator mechanism nodal points and the generalized coordinates that defining the positions of the manipulator configurations. For this purpose, the equations of interpolating polynomials located in three mutually perpendicular planes are used. Based on these three interpolating polynomials, a third-order hypersurface equation is obtained, which reflects the interrelation of geometric and kinematic parameters. The article also presents the results of virtual modeling of android robot hand mechanism movement, taking into account the position of the restricted area in the AutoCAD system. The results of calculations using the obtained analytical dependencies showed a reduction in the calculation time of test tasks. The conducted studies can be used in the development of intelligent motion control systems for autonomously functioning android robots in an organized environment without the participation of a human operator.
linear shifts, android robot, nodal points of mechanism, movement synthesis of manipulator, space of generalized coordinates, linear geometrical objects of generalized speeds space
1. Vertinskaya N. D. Zadachi geometricheskogo modelirovaniya tekhnologicheskih processov: nauchno-metodicheskoe posobie [Tasks of geometric modeling of technological processes: scientific and methodical manual]. Moscow, Akademii Estestvoznaniya Publ., 2015, 132 p. (in Russian)
2. Volkov V. Ya., Yurkov V. Yu. Mnogomernaya ischislitel'naya geometriya: monografiya [Multidimensional numeral geometry]. Omsk, Omsk State Techincal University Publ., 2008. 244 p. (in Russian)
3. Golovanov N.N. Geometricheskoe modelirovanie: ucheb. dlya vuzov po napravleniyu "Informatika i vychislitel'naya tekhnika" [Geometric modeling: studies. for universities in the direction of "Computer Science and Engineering"]. Moscow, Akademiya Publ., 2011. 270 p. (in Russian)
4. Grigoriev S. N., Andreev A. G., Ivanovskii S. P. Sovremennoe sostoyanie i perspektivy razvitiya promyshlennoj robototekhniki [The current state and prospects for the development of industrial robotics]. Mekhatronika, avtomatizaciya, upravlenie [Mechatronics, Automation, Control], 2013, I. 1, pp. 31-34. (in Russian)
5. Ermolov I.L. Avtonomnost' mobil'nyh robotov, ee sravnitel'nye mery i puti povysheniya [Autonomy of mobile robots, its comparative measures and ways to improve]. Mekhatronika, avtomatizaciya, upravlenie [Mechatronics, Automation, Control]. 2008, I. 6, pp. 23-28. (in Russian)
6. Zenkevich, S.L., Yushchenko A.S. Upravlenie robotami. Osnovy upravleniya manipulyacionnymi robototekhnicheskimi sistemami [Management of robots. Fundamentals of manipulating robotic systems management.] Moscow, MVTU Publ., 2000, 400 p. (in Russian)
7. Ivanov, G. S. Teoreticheskiye osnovy nachergatel'noy geometrii [Theoretical Foundations of Offensive Geometry]. Moscow, Mashinostroenie Publ., 1998. 157 p. (in Russian)
8. Ivanov G.S., Dmitrieva I.M. Princip dvojstvennosti - teoreticheskaya baza vzaimosvyazi sinteticheskih i analiticheskih sposobov resheniya geometricheskih zadach [The Duality Principle Is the Theoretical Basis of Interrelation of Synthetic and Analytical Methods of Solving Geometric Problems]. Geometriya i grafika [Geometry and graphics], 2016, V. 4, I. 3, pp. 3-11. (in Russian)
9. Kobrinskiy A.A., Kobrinskiy A.E. Manipulyatsionnyye sistemy robotov [Manipulation systems of robots]. Moscow, Nauka Publ., 1985. 344 p. (in Russian)
10. Kokareva Ya. A. Sintez uravnenij linejchatyh poverhnostej s dvumya krivolinejnymi i odnoj pryamolinejnoj napravlyayushchimi [Synthesis of Equations For Ruled Surfaces With Two Curvilinear And One Rectangular Directrixes]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 3, pp. 3-12. (in Russian). DOI:https://doi.org/10.12737/article_5bc454948a7d90.80979486
11. Korendyasev A. I., Salamander B.L., Tuves L.I. Manipulyacionnye sistemy robotov [Manipulation systems of robots]. Moscow: Mechanical Engineering Publ., 1989. 472 p. (in Russian)
12. Korotky V. A., Usmanova E. A., Khmarakova L. I. Komp'yuternoe modelirovanie kinematicheskih poverhnostej [Computer simulation of kinematic surfaces]. Geometriya i grafika [Geometry and graphics], 2015, vol. 3, i. 4, pp.19-27. (in Russian) DOIhttps://doi.org/10.12737/17347
13. Pritykin F. N. Virtual'noye modelirovaniye dvizheniy robotov, imeyushchikh razlichnuyu strukturu kinematicheskikh tsepey: monografiya [Virtual simulation of the movements of robots with different structure of kinematic chains]. Omsk, Omsk State Techincal University Publ., 2014, 172 p. (in Russian)
14. Pritykin F.N., Zaharov V.A. Issledovanie manyovrennosti mekhanizma manipulyatora pri zadannoj tochnosti pozicionirovaniya [Study of the maneuverability of the manipulator mechanism with a given positioning accuracy]. Vestink Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta [Vestnik of Kuzbass State Technical University]. 2015, no. 3(109), pp. 67 - 71. (in Russian)
15. Pritykin F. N., Nebritov V. I. Issledovanie razmerov i formy oblasti v mnogomernom prostranstve obobshchyonnyh skorostej, zadayushchej dopustimye mgnovennye sostoyaniya mekhanizma androidnogo robota [Investigation of the size and shape of the region in the multidimensional space of generalized velocities determining the permissible instantaneous states of the robot-android mechanism]. Omskiy nauchnyy vestnik [Omsk Scientific Bulletin], 2016, I. 5, pp. 29-34. (in Russian)
16. Rachkovskaya G.S. Geometricheskoe modelirovanie i grafika kinematicheskih linejchatyh poverhnostej na osnove triady kontaktiruyushchih aksoidov [Geometric modeling and graphs of kinematic ruled surfaces based on the triad of contacting axoids]. Geometriya i grafika [Geometry and graphics], 2016, V. 4, I. 3, pp. 46-53. (in Russian) DOIhttps://doi.org/10.12737/21533.
17. Rvachev, V. L. Teoriya R-funkcij i nekotorye ee prilozheniya [Theory of R-functions and some of its applications]. Kiev, Nauk. dumka Publ., 1982, 252 p. (in Russian)
18. Sal'kov N. A. Obshchie principy zadaniya linejchatyh poverhnostej [General Principles for Formation of Ruled Surfaces]. Geometriya i grafika [Geometry and graphics], 2018, V. 6, I. 4, pp. 20-31. (in Russian) DOIhttps://doi.org/10.12737/article_5c21f4a06dbb74.56415078
19. Sal'kov N. A. Obshchie principy zadaniya linejchatyh poverhnostej [General Principles for Formation of Ruled Surfaces]. Geometriya i grafika [Geometry and graphics], 2019, V. 7, I. 1, pp. 14-27. (in Russian) DOIhttps://doi.org/10.12737/article_5c9201eb1c5f06.47425839
20. Fox A., Pratt M. Vychislitel'naya geometriya. Primenenie v proektirovanii i na proizvodstve [Computational geometry. Application in design and production]. Moscow, Mir Publ., 1982, 304 p. (in Russian)
21. Yurkov V. Y. Formal'noe predstavlenie uslovij incidentnosti v mnogomernyh proektivnyh prostranstvah [Formal Representation of Incidence Conditions in Multidimensional Projective Spaces]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 3-14. (in Russian) DOIhttps://doi.org/10.12737/22838
22. Yushchenko A.S. Intellektual'noe planirovanie v deyatel'nosti robotov [Intellectual planning in the activity of robots]. Mekhatronika, avtomatizaciya, upravlenie [Mechatronics, Automation, Control]. 2005, I. 3, pp. 5-18. (in Russian)
23. Kutlubaev I. M., Bogdanov A. A., Novoseltsev N. V., Krasnobaev M. V., Saprykin O. A. Control system of the anthropomorphous robot for work on the low-altitude earth orbit. International Journal of Pharmacy and Technology, 2016, vol. 8, i. 3, pp. 18913-18199
24. Gulletta G., Araújo S. M., Costa e Silva E., Costa M. F., Erlhagen W., Bicho E. Nonlinear Optimization for Human-like Synchronous Movements of a Dual Arm-hand Robotic System. AIP Conference Proceedings, 2014, vol. 1648, i. 1 Available at: https://aip.scitation.org/doi/10.1063/1.4912427 (Accessed 01 April 2015).
25. Hasegawa T., Suehiro T., Takase K. A model-based manipulation system with skill-based execution. IEEE Trans. Rob. and Autom., 1992, no. 5, pp. 535-544
26. Jacak W., Lysakowska B., Sierocki I. Planning collision-free movements of a robot: a systems theory approach. Robotica, 1988, no. 4, pp. 289-296
27. Karpushkin V. N., Chernavsky A. V. The reduction of the control of movement for manipulation robots from many degrees of freedom to one degree of freedom. Journal of Mathematical Sciences, 1997, pp. 531-533
28. Ko N. Y., Lee B. N., Ko M. S. An approach to robot motion planning for time-varying obstacle avoidanse using the view-time concept. Robotica, 1993, no. 4, pp. 315-327
29. Lopatin P. Investigation of a Target Reachability by a Manipulator in an Unknown Environment. International Conference on Mechatronics and Automation. 2016, pp. 37-42.
30. Pritykin F. N., Tevlin A. M. Procedure for construction of manipulator motions from a given local grip path in the presence of obstacles. Soviet machine science, 1987, no. 4, pp. 30-33.