ABOUT BUILDING OF MODELS FOR OBJECTS IN SPACE OF FOUR AND MORE DIMENSIONS IN EDUCATIONAL PROCESS
Abstract and keywords
Abstract (English):
In this paper the visibility concept in the context of modeling of multidimensional spaces’ objects is clarified. It is concluded that such model’s visibility should be defined as unambiguity and completeness of information presented in this model and consistent with the student’s experience in the area of modeling a space of higher dimension (3D) by elements of spaces of lower dimension (2D). Such possibilities are presented by the generalized complex drawing. Examples for objects 4D-modeling using two 3D or three 2D flat projections are presented, some properties of the 4D generalized drawing are listed. The solution of problems with 4D-objects is considered on the example of 4D-pyramid section construction, and deploying its lateral surface. It is shown that to simplify the solution of these problems is required a system allowing automatically perform repetitive sequences of constructions. A list of elementary constructions is presented, and a method for recording of composite constructions and based on them algorithms for problems solving is shown. It is demonstrated that a 3D-scan of 4D-pyramid’s lateral surface, constructed with 2D drawing, can be imported into CAD as a 3D-model. The deploying of the 4D-cone’s lateral surface is considered. The resulting scan’s surface 3D-model imported into CAD is shown. Cases are indicated when a multidimensional space’s object 3D-model may be more visual than a flat one. As an example, 2D-models for imaginary continuations of lines and circles of the complex plane (simulated by Euclidean 4D-space) are presented. Two 3D-projections for imaginary continuations of a circle with a real radius as 3D-space surfaces are shown. It is noted that in order to combine in an educational course the multidimensional space’s objects modeling and work in CAD the tasks on designing of complex technical surfaces by means of output in multidimensional space are suitable. A brief review of sources is given, in which theoretical foundations and the use of key geometrical methods for surfaces construction are considered; an example of a surface constructed by a progressive key method and imported into CAD is shown. The concept of a product’s electronic model (PEM) is described, in which the modeled object’s 3D-simulator as its visual representation is combined with numerous 2D-layers, which elements automatically perform geometrical and graphical calculations in spaces of any dimensions, and control 3D-model’s dimensions and shape through constructive and parametric links. Conclusions are drawn about the possibility of visual multidimensional modeling in the educational process, the advantages of using a complex drawing for solving of problems with multidimensional objects, the need to use special systems of constructive geometric modeling that automate repetitive sequences of constructions. It is also concluded that multidimensional objects’ 2D-models can and should be directly involved in the PEM formation.

Keywords:
multidimensional geometry, general complex drawing, Radishchev hyper epure, descriptive geometry of multidimensional space, 3D modeling, geometrical constructions, surface constructing, CAD.
Text

Введение
В статье рассматриваются вопросы, связанные с построением моделей объектов многомерных евклидовых пространств в учебном процессе. Многочисленные публикации последних лет [10; 20–22; 29; 43] показывают, что моделирование объектов многомерных пространств имеет большое значение для решения практических задач, однако вопросы построений в многомерных пространствах, как правило, освещаются лишь в научных статьях и монографиях [8; 10; 24; 37; 38; 41]. Систематическое решение задач, связанных с построениями в многомерных пространствах, в учебном процессе не рассматривается. Попытка включения в курс «Наглядной инженерной геометрии» разделов, связанных с многомерным моделированием, в [35; 36] вызывает много вопросов. В частности, предлагаемый в [35] подход основан на рассмотрении следующих тем: пересечение геометрических фигур плоскостью, прямой, пересечение геометрических фигур между собой, структура и развертки n-мерных многогранников, решение метрических задач, которые излагаются, за исключением разверток, исключительно на примерах
трехмерного моделирования. В работе [36] производится попытка пояснить значение термина «наглядность» в контексте нового курса, но связь многомерных моделей с фазовыми пространствами системы в физической химии и материаловедении, с многокоординатной обработкой на станках с ЧПУ только декларируется без каких-либо наглядных примеров, а все практическое моделирование осуществляется при помощи «современных информационных технологий» — CAD-систем, по сути своей, не приспособленных для работы с пространствами более трех измерений. Сказанное свидетельствует о противоречиях, которые становятся очевидными при попытках увязать элементы многомерного моделирования с геометро-графическими курсами, базирующимися на использовании CAD-систем. Для преодоления этих противоречий требуется уточнить понятие наглядности в контексте многомерного моделирования и определить требования к компьютерным системам геометрического моделирования для решения задач, связанных с объектами многомерных пространств.

References

1. Agal’tsev A.V. Nekotorye graficheskije sposoby postroenija poverhnostej, blizkih k minimal’nym [Some graphical methods of creation of almost minimum surfaces]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1969, V. 8. pp. 66-71. (in Russian)

2. Bazhenkij JU. M. K voprosu o prilozhenii teorii splajnov k kljuchevym metodam konstruirovanija poverhnostej [To a question on application of the spline-theory to geometrical-key methods of surface designing]. Materialy Mezhzonal’noj nauchno-metodicheskoj konferencii vuzov Sibiri, Urala I Dal’nego Vostoka po prikladnoj geometrii i inzhenernoj grafike [Materials of Interzonal scientifically-methodical conference of high schools of Siberia, Ural and the Far East on applied geometry and the engineering drawing]. Omsk, 1975, pp. 103-106. (in Russian)

3. Bazhenkij JU. M., Slastin JU.V. Kljuchevye metody v teorii splainov [Geometrical-key methods in the spline-theory]. Kibernetika grafiki i prikladnaja geometrija poverhnostej [Cybernetics of the graphics and the applied geometry of surfaces]. Moscow, MAI Publ., 1975, V. 331, pp. 54-57. (in Russian)

4. Boykov A. A. Rol' nachertatel'noy geometrii v vysshem tekhnicheskom obrazovanii v usloviyakh komp'yuterizatsii obrazovaniya [The role of descriptive geometry in higher technical education in the conditions of computerization of education]. Vestnik Kostromskogo gosudarstvennogo universiteta. Seriya: Pedagogika. Psikhologiya. Sotsiokinetika [Bulletin of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics]. 2017, V. 23, I. 3, pp. 139-144. (in Russian)

5. Boykov A.A. Sredstva avtomatizacii geometricheskikh postroenij [The tools for geometrical constructions automation]. XII Mezhdunarodnaja nauchno-tehnicheskaja konferencija studentov, aspirantov i molodykh uchenykh «Energija-2017» [The Twelfth International Scientific and Technical Conference of Students, Graduate Students and Young Scientists “Energy-2017”: Conference materials]. Ivanovo: ISPU Publ., 2017, pp. 188-189. (in Russian)

6. Boykov A.A., Shulaikin D.A. Trekhmernaya vizualizatsiya geometricheskikh obrazov i otnosheniy kompleksnoy ploskosti [Three-dimensional visualization of geometric images and relationships of the complex plane]. Problemy koordinatsii raboty tekhnicheskikh vuzov v oblasti povysheniya kachestva inzhenerno-graficheskoy podgotovki studentov [Problems of coordination of the work of technical universities in the field of improving the quality of engineering and graphic training of students]. Rostov-on-Don, DGTU Publ., 2018. pp. 163-171. (in Russian)

7. Valkov K.I. Vvedenie v teoriju modelirovanija [Introduction to the theory of modeling]. Leningrad, LISI Publ., 1974. 152 p. (in Russian)

8. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie. Teorija, praktika, avtomatizacija [Constructive geometric modeling. Theory, practice, automation]. Saarbrucken: Lambert Academic Publ., 2010. 355 p. (in Russian)

9. Ivanov G.S. Teoreticheskie osnovy nachertatel'noj geometrii [Theoretical foundations of descriptive geometry]. Moscow, 1998. 160 p. (in Russian)

10. Korotkiy V.A. Geometricheskoje modelirovanije poverhnosti posredstvom ee otobrazhenija na chetyrehmernoe prostranstvo [Geometric modeling of surface through its projection on four-dimensional space]. Omskiy nauchnyy vestnik [The Journal Omsk Scientific Bulletin]. 2015, I. 137, pp. 8-12. (in Russian)

11. Kotov I.I. Geometricheskije osnovy kljuchevykh sposobov postroenija poverhnostej [Geometrical foundations of key methods of the construction of surfaces]. Nachertatl’naja geometrija [Descriptive geometry]. Moscow, VZEHI Publ., 1957, I. 10, pp. 15-36. (in Russian)

12. Kotov I.I. Novyj metod postroenija poverhnostej, udovletvorjajutchikh nekotorym napered zadannym uslovijam [A new method for constructing surfaces that satisfy certain preassigned conditions]. Voprosy teorii, prilozhenij i metodiki prepodavanija nachertatel’noj geometrii. Trudy Rizhskoj nauchno-metodicheskoj konferencii [Questions of theory, applications and methods of teaching descriptive geometry. Proceedings of the Riga Scientific Methodical Conference]. Riga, 1960, pp. 143-161. (in Russian)

13. Kuznetsov N.A. K voprosu o nagljadnosti izobrazhenij [On the issue of clarity of images]. Nachertatel’naja geometrija i inzhenernaja grafika [Descriptive geometry and engineering graphics: collection of scientific and methodical articles]. Moscow, I. 1, 1973, pp. 24-30. (in Russian)

14. Nartova L.G. Kurs nachertatel'noj geometrii s algoritmami dlya EHVM [Course of secriptive geometry with algorithms for computers]. Moscow, MAI Publ., 1994. 253 p. (in Russian)

15. Kushch N.V. Analiticheskaja interpretacija kljuchevykh sposobov konstruirovanija tentovakh poverhnostej [Analytical interpretation of geometrical key methods to design awning surfaces]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1972, V. 14, pp. 110-114. (in Russian)

16. Kushch N.V. O kljuchevykh sposobah konstruirovanija poverhnostej tentovykh pokrytij [On the geometrical key methods of designing surfaces of awning coatings]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1973, V. 17, pp. 23-26. (in Russian)

17. Kushch N.V. Ob uravnenii poverhnosti, konstruiruemoj kljuchevymi sposobami [On the equation of a surface constructed by geometrical key methods]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1974, V. 18, pp. 56-59. (in Russian)

18. Lapshin M.L. Algorifmizacija kljuchevykh sposobov obrazovanija poverhnostej [Algorithmization of geometrical-key surface formation methods]. Prikladnaja geometrija poverhnostej [Applied geometry of surfaces]. Moscow, MAI Publ., 1964, pp. 41-49. (in Russian)

19. Lapshin M.L. Postroenije poverhnostej kluchevym sposobom [Building surfaces by a geometrical key method]. Voprosy nachertatel’noj geometrii [Descriptive geometry questions]. Gorky, GPI Publ., 1963, V. 19, I. 4. pp. 11-19. (in Russian)

20. Levkin Yu.S. Poluchenie chetyrekhmernykh nomogramm na baze teoremy podobiya [Obtaining four-dimensional nomograms based on the similarity theorem]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 2, pp. 69-74. DOI:https://doi.org/10.12737/article_5953f334279642.78930109. (in Russian)

21. Levkin Yu. S. Pyatimernaya dvukhoktantovaya epyurnaya nomogramma [Five-Dimensional Two-Octant Epurum Nomogram]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 44-51. DOI:https://doi.org/10.12737/article_5a-17fecf2feac9.18123975. (in Russian)

22. Lyashkov A. A. Osobennost' otobrazheniya giperpoverkhnosti chetyrekhmernogo prostranstva [The peculiarity of the mapping of the hypersurface of four-dimensional space]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 3, pp. 3-10. DOI:https://doi.org/10.12737/article_59bfa3078af4c1.45321238. (in Russian)

23. Mel'nik V.I. Klyuchevoy sposob postroeniya vzaimoobertyvayushchikh i gladkosopryazhennykh poverkhnostey [The key method of constructing mutually enveloping and smoothly conjugate surfaces]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev: Budіvel'nik Publ., 1975, I. 19, pp. 49-52. (in Russian)

24. Metody nachertatel’noj geometrii i ee prilozhenija [Methods of descriptive geometry and its applications]. Moscow, Gostekhizdat Publ., 1955. 412 pp. (in Russian)

25. Moshkova T.V., Romensky S.A., Rotkov S.I., Tyurina V.A. Issledovanije vremennykh harakteristik algoritma vosstanovlenija karkasnoj modeli po proekcionnym izobrazhenijam [Research for time characteristics of algorithm of reconstructing wireframe model from projection images]. GraphiCon-2018 [Graphic-2018]. Tomsk, 2018. pp. 369-372. (in Russian)

26. Nikiforov P.V. Poluchenije krivoj teoreticheskogo profilja Zhukovskogo dlja sozdanija 3D-modeli poverhnosti kryla [Getting the curve of the theoretical profile of Zhukovsky to create a 3D-model of the surface of the wing]. Available at: http:// dgng.pstu.ru/conf2017/papers/62/ (in Russian)

27. Podgorny A.L. Kljuchevye sposoby zadanija mnozhestv linij i konstruirovanije poverhnostey [Geometrical key methods to Specify Line Sets and Surface Design]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1969, V. 9, pp. 6-21. (in Russian)

28. Podgorny A.L., Mel’nik V.I. Konstruirovanije gladkosoprjazhennykh poverhnostey vydelenijem iz mnozhestv sostavnykh linij [Construction of smoothly conjugated surfaces by selection from a set of compound lines]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1973, V. 17, pp. 16-19. (in Russian)

29. Pritykin F.N., Nefedov D.I. Analiticheskoje zadanije chetyrehmernoj oblasti razreshennyh konfiguracij ruki androidnogo robota pri nalichii zapretnoj zony v rabochem prostranstve [Analytical defining of the four-dimensional region of allowed configurations of the android robot arm in the presence of a restricted area in the working space]. GraphiCon-2018 [Graphic-2018]. Tomsk, 2018, pp. 376-380. (in Russian)

30. Korotkiy V.A. Programma dlya EHVM «Postroenie krivoy vtorogo poryadka, prokhodyashchey cherez dannye tochki i kasayushchikhsya dannykh pryamykhi» [The Construction of the Curve of the Second Order Passing Through the Data Points and Data Concerning Direct]. Svid. o gosudarstvennoy registratsii programmy dlya EVM, no. 2011611961, 04.03.2011 [Certificate of state registration No. 2011611961 dated 04.03.2011]. (in Russian)

31. Seregin V.I. Mezhdistsiplinarnye svyazi nachertatel'noy geometrii i smezhnykh razdelov vysshey matematiki [Interdisciplinary communication of descriptive geometry and related sections of higher mathematics]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 3-4, pp. 8-12. DOI:https://doi.org/10.12737/2124. (in Russian)

32. Sinicyn V.L. K voprosu issledovanija processa topologicheskogo preobrazovanija soprjazhennykh linij [On the issue of studying the process of topological transformation of conjugate lines]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1968, V. 7, pp. 89-93. (in Russian)

33. Sinicyn V.L. Postroenije ocherkov deformiruemykh poverhnostej [The construction of the outlines of deformable surfaces]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1967, V. 5, pp. 120-124. (in Russian)

34. Slastin Ju.V. Kljuchevye metody v metode splajnov konstruirovanija poverhnostej [Geometrical key methods in the spline-method of constructing surfaces]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1979, V. 28, pp. 49-50. (in Russian)

35. Sokolova L.S. Mnogomernoe prostranstvo i naglyadnaya geometriya v uchebnoy programme po geometricheskoy podgotovke dlya bakalavriata [Multidimensional space and visual geometry in the curriculum on geometric training for undergraduate]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 1, pp. 40-46. DOI:https://doi.org/10.12737/10457. (in Russian)

36. Sokolova L.S. O naglyadnosti v inzhenernoy geometrii [On visualization in engineering geometry]. Problemy kachestva graficheskoy podgotovki studentov v tekhnicheskom vuze: traditsii i innovatsii [Problems of the quality of graphic training of students in a technical college: traditions and innovations]. Perm', 2017, pp. 138-147. (in Russian)

37. Stankov S.S. Sposoby preobrazovaniya giperepyura V.P. Radishcheva [Ways to transform the hyper-chart of V.P. Radishchev]. Voprosy nachertatel’noj geometrii [Descriptive geometry questions]. Gorky, GPI Publ., 1963, V. 19, I. 4, pp. 5-10. (in Russian)

38. Trudy Moskovskogo nauchno-metodicheskogo seminara po nachertatel'noy geometrii i inzhenernoy grafike [Proceedings of the Moscow Scientific Methodological Seminar on Descriptive Geometry and Engineering Graphics]. Moscow, 1963. 332 p. (in Russian)

39. Tyurina V.A. Razrabotka metodov preobrazovaniya karkasnoy modeli v zadache sinteza obraza 3D ob"yekta po yego proyektsiyam. Kand. Diss. [Development of methods for transforming a frame model in the problem of synthesizing an image of a 3D object according to its projections. Cand. Diss.]. Nizhny Novgorod, NNGASU Publ., 2003. 170 p. (in Russian)

40. Filippov P.V., Arhipenkova I.F. Giperkvadriki Ye4 v klyuchevykh metodakh konstruirovaniya poverkhnostey [Hyperquadrics of four-dimensional Euclidian space in geometrical-key surface design techniques]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and the engineering drawing]. Kiev, Budivelnik Publ., 1986, V. 41, pp. 10-11. (in Russian)

41. Filippov P.V. Nachertatel'naja geometrija mnogomernogo prostranstva i ee prilozhenija [Descriptive geometry of multidimensional space and its applications]. Moscow, LENAND Publ., 2016. 282 p. (in Russian)

42. Heifets A.L. Inzhenernaya komp'yuternaya grafika AutoCAD [AutoCAD Engineering computer graphics] . Moscow, Dialog-MIFI Publ., 2002. 432 p. (in Russian)

43. Yurkov V.Yu. Formal'noe predstavlenie usloviy intsidentnosti v mnogomernykh proektivnykh prostranstvakh [Formal representation of incidence conditions in multidimensional projective spaces]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 3-13. DOI:https://doi.org/10.12737/22838. (in Russian)

Login or Create
* Forgot password?