GENERAL PRINCIPLES FOR FORMATION OF RULED SURFACES. PART 1
Abstract and keywords
Abstract (English):
Probably, it is impossible to find such industry where the ruled surfaces would not be used. They are used in agriculture, in the heavy and light industries, in construction, in aircraft manufacturing, and in military art. Ruled surfaces are used in the design of wings, tail and partially fuselage of aircraft, car bodies, in the project engineering of slopes and embankments of auto-roads, abutments of bridge supports, transitions from a vertical quay to inclined walls of embankments, various hydraulic structures, towers, masts, cooling towers, vaults and arches, overlaps of pavilions, circuses, stadiums and other building structures, as well as in the calculation of solar exposure. This paper deals with the formation of ruled surfaces in a single method of their definition. A number of examples for definition of ruled surfaces have been presented. These examples show that in general for definition of ruled surfaces it is required to have three guides and three geometric conditions characterizing the position of a rectilinear generator with respect to each of the guides. Both surfaces and lines can act as guides. The plane is selected separately from other surfaces. The geometric conditions are the intersection with the guide line and the tangent or intersection at a certain sharp angle with the guide surface. The table of 19 variants for guides has been given. An attempt to classify surfaces does not even consider in this paper since it is impossible to classify ruled surfaces, even within its class, due to the lack of a criterion showing their belonging to one or another species. It can be concluded that the classification of surfaces may be used only for educational purposes and in cases where the surface name is obvious.

Keywords:
surfaces, ruled surfaces, geometry, descriptive geometry, surface formation.
Text

Введение
Линейчатые поверхности имеют большое значение в практической деятельности человека [2; 6; 10; 12; 14–17]. Они широко применяются в различных областях науки, техники [3; 6; 20; 21; 30; 31; 33], строительства [4; 9; 14; 28; 32]. Линейчатые поверхности используются при конструировании крыльев, хвостового оперения и частично фюзеляжа самолетов, кузовов автомобилей, при проектировании откосов и насыпей автомобильных дорог [18; 19; 22–25; 28; 29], устоев мостовых опор, переходов от вертикальной причальной к наклонным стенкам набережных, различных гидротехнических сооружений, башен, мачт, градирен, сводов и арок, перекрытий павильонов, цирков, стадионов и других строительных сооружений, при расчете инсоляции [11]. Примерами практического применения линейчатых поверхностей в технике являются зубчатые передачи [5; 7; 13], в том числе с гиперболическим зацеплением, сцепные муфты, шнековые питатели, пружины с прямоугольным сечением прутка; прямоугольная, треугольная, трапецеидальная, упорная резьбы, нарезка в орудийных и винтовочных стволах, винты самолетов и кораблей, лопатки различного назначения турбин [8]. Этим перечнем далеко не исчерпываются возможности практического использования линейчатых поверхностей. В аналитической и дифференциальной геометриях линейчатые поверхности, как и другие, задаются уравнением: F(x, y, z) = 0, (1)
в котором устанавливается зависимость между координатами точек, принадлежащих этой поверхности. В зависимости от характера уравнения поверхность будет называться алгебраической n-го порядка, если уравнение алгебраическое n-ной степени, то трансцендентной, если уравнение трансцендентное, выражает тригонометрическую или логарифмическую зависимость. Произвольная секущая плоскость пересекает алгебраическую поверхность n-го порядка по кривой того же порядка. Произвольная прямая линия пересекает алгебраическую поверхность в точках, количество которых равно порядку этой поверхности. В начертательной геометрии чаще всего поверхность задается кинематическим способом. При этом поверхность получается в результате непрерывного перемещения в пространстве какой-либо линии, называемой образующей, по определенному закону. Поверхность, полученная в результате перемещения прямолинейной образующей, называется линейчатой.

References

1. Bubennikov A.V., Gromov M.Ya. Nachertatel`naya geometriya [Descriptive geometry]. Moscow: Vy`sshaya shkola Publ., 1973. 416 p. (in Russian)

2. Gershman I.P. Konstruirovanie poverkhnostey putem vydeleniya ikh nepreryvnykh lineychatykh karkasov iz mnogoparametricheskikh mnozhestv liniy [Design surfaces by highlighting their non-continuous bar frames from a multivariate sets of lines]. Trudy UDN im. P. Lumumby [Works UDN them. P. Lumumba]. Moscow, 1967, V. 26: Matematika. I. 3: Prikladnaya geometriya Publ. Pp. 33-47. (in Russian)

3. Dimentberg F.M. Teoriya vintov i eyo prilozheniya [The theory of screws and its applications]. Moscow, Nauka Publ., 1978. 328 p. (in Russian)

4. Ivanov V.N., Krivoshapko S.N., Romanova V.A. Osnovy`razrabotki i vizualizacii ob``ektov analiticheskix poverxnostej i perspektivy` ix ispol`zovaniya v arxitekture i stroitel`stve [Bases of development and visualization of objects of analytical surfaces and prospects of their use in architecture and construction]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 4, pp. 3-14. DOI:https://doi.org/10.12737/article_5a17f-590be3f51.37534061. (in Russian)

5. Kalashnikov S.N. Zubchatie kolesa i ih izgotovlenie [The gears and their manufacture]. Moscow. Mashinostroenie Publ., 1983. 264 p. (in Russian)

6. Kamalov A. Konstruirovanie lineychatykh poverkhnostey karkasno-parametricheskim metodom i ikh primenenie. Kand. Diss. [The design of the ruled surfaces of frame-parametric method and their application. Cand. Diss.]. Samarkand, 1980. (in Russian)

7. Karacharovskii V.YU., Riazanov S.A. Vizualizatsionnayamotsenka geometricheskikh kharakteristik kontaktiruyushcheympoverkhnosti v chervyachnykh peredachakh na osnovemprimeneniya metodov 3D komp'yuternoy grafiki [Applicationmof 3D computer graphics and solid modeling in the designmprocesses gear cutting]. Vestnik Saratovskogo gosudarstvennogomtehnicheskogo universiteta [Bulletin of the SaratovmState Technical University]. Saratov. SGTU Publ., 2010, I. 4, pp. 55-60. (in Russian)

8. Kislookiy V.N., Sedletskaya N.I., Kharchenko A.I. Avtomatizatsiya predstavleniya geometrii diskretnykh modeley v zadachakh prochnostnykh raschetov lopatok parovykh turbin [Automation before presentation of the geometry of discrete models in problems of stress analysis of steam turbine blades]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1979, I. 28. pp. 19-23. (in Russian)

9. Koznevski E`. Karkasy` kry`sh i derev`ya teorii grafov [Frames of the roofs and trees of graph theory]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 1, pp. 12-20. DOI:https://doi.org/10.12737/18054. (in Russian)

10. Kokareva Ya.A. Sintez uravnenij linejchaty`x poverxnostej s dvumya krivolinejny`mi i odnoj pryamolinejnoj napravlyayushhimi [Synthesis of the equations of the ruled surfaces with two curvilinear and one rectilinear guide]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 3-12. DOI:https://doi.org/10.12737/article_5bc454948a7d90.80979486. (in Russian)

11. Miloserdov E.P. Raschet parametrov konstruktsii i razrabotka algoritmov realizatsii analemmaticheskikh solnechnykh chasov [Calculation of the design parameters and the development of the implementation of algorithms analemmaticheskih sundial]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 3, pp. 14-16. DOI:https://doi.org/10.12737/2076. (in Russian)

12. Nitejskij A.S. Konstruirovanie torsovoj poverhnosti metodom podvizhnogo trekhgrannika Frene [Construction of a torso surface by the method of a movable triaxial Frenet]. Omskij nauchnyj vestnik [Omsk Scientific Herald]. 2013, I. 2 (120), pp. 151-153. (in Russian)

13. Panchuk K.L., Lyashkov A.A., Varepo L.G. Kinematicheskaya geometriya krivoj linii i ee prilozhenie k geometricheskomu modelirovaniyu ploskogo zubchatogo zacepleniya [Kinematic geometry of a curved line and its application to the geometric modeling of a flat gearing]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 3, pp. 3-12. DOI:https://doi.org/10.12737/article_5bc454948a7d90.80979486 (in Russian)

14. Peredachi spiroidny`e s cilindricheskimi chervyakami. Raschet geometrii [Spyroid transmissions with cylindrical worms]. Moscow: Rotaprint VNIINMASh Publ., 1977. 66 p. (in Russian)

15. Podgorny`j A.L. Konstruirovanie poverxnostej obolochek po zadanny`m usloviyam na osnove vy`deleniya ix iz kongruencij pryamy`h [The construction of shell surfaces with given conditions on the basis of their separation from congruences of straight lines]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budіvel`nik Publ., 1969, V. VIII, pp. 17-28. (in Russian)

16. Pilipaka S.F., Mukvich N.N. Konstruirovanie linejchatyh poverhnostej obshchego vida v sisteme soprovoditel'nogo trekhgrannika napravlyayushchej prostranstvennoj krivoj [Construction of ruled surfaces of general form in the system of the accompanying trihedron of the directional spatial curve]. Trudy Tavricheskoj gosudarstvennoj agrotekhnicheskoj akademii [Proceedings of the Taurian State Agrotechnical Academy]. Melitopol: TDATU Publ., 2007, I. 4. (in Russian)

17. Rachkovskaya G.S. Geometricheskoe modelirovanie i grafika kinematicheskih linejchatyh poverhnostej na osnove triady kontaktiruyushchih aksoidov [Geometric modeling and graph of kinematic ruled surfaces based on the triad of contacting axoids]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 46-52. DOI:https://doi.org/10.12737/21533 (in Russian)

18. Ryzhov N.N. Matematicheskoe modelirovanie proezzhey chasti avtomobil'nykh dorog [Mathematical modeling carriageway roads]. Moscow, MADI Publ., 1988. (in Russian)

19. Sal'kov N.A. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric modeling and descriptive geometry]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 31-61. (in Russian)

20. Sal`kov N.A. Geometricheskaya sostavlyayushhaya texnicheskix innovacij [Geometric component of technical innovations]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2, pp. 85-94. DOI:https://doi.org/10.12737/article_5b55a-5163fa053.07622109. (in Russian)

21. Sal'kov N.A. Geometricheskie parametry grokhota [Geometric parameters of the screen]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1987, I. 43, pp. 69-71. (in Russian)

22. Sal'kov N.A. Matematicheskoe modelirovanie lineynykh i poverkhnostnykh form avtomobil'nykh dorog na podkhodakh k mostam [Mathematical modeling of linear and surface-forms of roads on the approaches to bridges]. Trudy MADI: Prikladnye teoreticheskie voprosy proektirovaniya perekhodov cherez vodotoki [Proceedings MADI: Applied theoretical design issues crossing streams]. Moscow, 1989, pp. 60-66. (in Russian)

23. Sal`kov N. A. Metody` parametricheskoj geometrii v modelirovanii avtomobil`ny`x dorog [Methods of parametric geometry modelling of roads]. Zhurnal estestvennonauchny`x issledovanij [Journal of Natural Sciences]. 2016, V. 1, I. 4, pp. 1-1. DOI:https://doi.org/10.12737/22143. (in Russian)

24. Sal'kov N.A. Modelirovanie avtomobil'nykh dorog [Modeling roads]. Moscow, INFRA-M Publ., 2012, 120 p. (in Russian)

25. Sal`kov N.A. Modelirovanie geometricheskih form avtomobil` ny`kh dorog [Modeling of geometric shapes of roads]. Moscow: INFRA-M Publ., 2019. 162 p. (in Russian)

26. Sal'kov N.A. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, INFRA-M Publ., 2013. 184 p. (in Russian)

27. Sal'kov N.A. Nachertatel'naja geometrija [Descriptive geometry]. Moscow, INFRA-M Publ., 2014. 235 p. (in Russian)

28. Sal'kov N.A. Parametricheskaya geometriya v geometricheskom modelirovanii [Parametric geometry in the geometric modeling]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 3, pp. 7-13. DOI:https://doi.org/10.12737/6519. (in Russian)

29. Sal'kov N.A. Sal'kov N.A. // Geometriya i grafika. - 2016. - V. 4. - № 1. - pp. 55-63. - DOI:https://doi.org/10.12737/18058.

30. Sal'kov N.A. / Geometriya i grafika. - 2018. - V. 6. - № 1. - Pp. 20-33. - DOI:https://doi.org/10.12737/article_5ad094a0380725.32164760.

31. Sal'kov N.A. Formirovanie tsiklicheskikh poverkhnostey v kineticheskoy geometrii [Formation of cyclic surfaces in kinetic geometry]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 24-36. (in Russian)

32. Shvidenko Yu.Z. Sopryazheniya lineychatymi povrekhnostyami i ikh primenenie dlya konstruirovaniya obolochek. Kand. Diss. [Mate bar poverhnosti and their use of for constructing shells.Cand. Diss.]. Kiev, 1966. (in Russian)

33. Kheyfets A.L., Loginovskij A.N. 3D-modeli linejchaty`x poverxnostej s tremya pryamolinejny`mi napravlyayushhimi [3D-Models of ruled surfaces with three rectilinear guides]. Vestnik YuUrGU. Seriya «Stroitel`stvo i arhitektura» [Bulletin of SUSU. Series «Construction Engineering and Architecture»]. 2008, I. 25, pp. 51-56. (in Russian)

34. Frolov S.A. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, Mashinostroenie Publ., 1978. 240 p. (in Russian)

Login or Create
* Forgot password?