from 01.10.2008 until now
Russian Federation
We know very little about such an interesting surface as Dupin cyclide. It belongs to channel surfaces, its special cases are tor, conical and cylindrical surfaces of rotation. It is known that Dupin cyclides are the only surfaces whose focal surfaces, that are surfaces consisting of sets of curvatures centers points, have been degenerated in second-order curves. Two sets give two confocal conics. That is why any study of Dupin cyclides is of great interest both scientific and applied. In the works devoted to Dupin cyclide and published in the "Geometry and Graphics" journal, are presented various properties of cyclides, and demonstrated application of these surfaces in various industries, mostly in construction. Based on the cyclides’ properties in 1980s have been developed numerous inventions relating to devices for drawing and having the opportunity to be applied in various geometric constructions with the use of computer technologies. In the present paper have been considered various options for representation of Dupin cyclides on a different basis – from the traditional way using the three given spheres unto the second-order curves. In such a case, if it is possible to represent four cyclides by three spheres, and when cyclide is represented by the second-order curve (konic) and the sphere their number is reduced to two, then in representation of cyclide by the conic and one of two cyclide’s axes a single Dupin cyclide is obtained. The conic itself without any additional parameters represents the single-parameter set of cyclides. Representations of Dupin cyclides by ellipse, hyperbola and parabola have been considered. The work has been sufficiently illustrated.
Dupin cyclide, surface constructing, second-order curves, descriptive geometry, computer graphics, engineering graphics.
Мы очень мало знаем о такой интересной поверхности, как циклида Дюпена [25]. Она принадлежит к каналовым поверхностям [3–6; 8], ее частными случаями являются тор, коническая и цилиндрическая поверхности вращения.
1. Argunov B.I., Balk M.B. Geometricheskie postroenija na ploskosti [Geometric constructions on the plane]. Moscow, Uchpedgiz Publ., 1957. (in Russian).
2. Argunov B.I., Balk M.B. Elementarnaja geometrija [Elementary geometry]. Moscow, Prosveshhenie Publ., 1966. 240 p.
3. Berzhe M. Geometrija [The geometry]. V. 1. Moscow, Mir Publ., 1984. 500 p.
4. Berzhe M. Geometrija [The geometry]. V. 2. Moscow, Mir Publ., 1984. 368 p.
5. Gil'bert D., Kon-Fossen S. Nagljadnaja geometrija [Visual geometry]. Moscow, Leningrad, Obyedinennoe nauchno-tehnicheskoe izdatel'stvo NKTP SSSR, Glavnaya redakcija obshhetehnicheskoj literatury i nomografii Publ., 1936. 302 p.
6. Grjaznov Ja.A. Otsek kanalovoj poverhnosti kak obraz cilindra v rasslojaemom obrazovanii [Bay canal surface as a cylinder in rassloennom education]. Geometrija i grafika [Geometry and graphics]. 2012, V. 1, I. 1, pp. 17-19. DOI:https://doi.org/10.12737/2077. (in Russian).
7. Ivanov G.S. Konstruktivny`j sposob issledovaniya cvoystv parametricheski zadannyh krivy`h [Constructive way to study the properties of parametrically defined curves]. Geometrija i grafika [Geometry and graphics]. 2012, V. 2, I. 3, pp. 3-6. DOI:https://doi.org/10.12737/6518. (in Russian).
8. Klein F. Vysshaya geometrija [Higher geometry]. Moscow, Leningrad, GONTI Publ., 1939.
9. Kostovskij A.N. Geometricheskie postroenija odnim cy`rkulem [The geometric construction of one compass]. Moscow, Nauka Publ., 1984. (in Russian).
10. Krivoshapko S.N., Ivanov V.N. Enciklopedija analiticheskih poverhnostej [Encyclopedia of analytical surfaces]. Moscow, LIBROKOM Publ., 2010. (in Russian).
11. Levickij V.S. O teme «Soprjazhenija» v kurse «Inzhenernaja grafika» [About "Mates" in the course "Engineering graphics"]. Sbornik nauchno-metodicheskih statej po nachertatel`noj geometrii i inzhenernoj grafike [Collection of scientific and methodological articles on descriptive geometry and engineering graphics]. Moscow, Vysshaja shkola Publ., 1980, pp. 44-51. (in Russian).
12. Nadolinnyj V.A. Analiticheskie metody` v konstruirovanii poverhnostej [Analytical methods in the design of surfaces]. Kiev, KPI Publ., 1981. (in Russian).
13. Sal'kov N.A. Ob osobennostyakh osi torovoy poverkhnosti peremennogo radiusa [On the singularities of the axis of the torus surface of variable radius]. Prikladnaja geometrija i inzhenernaja grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1982, I. 33, pp. 79-80.
14. Sal'kov N.A. O nekotory`kh zakonomernostyakh, imejushchikh mesto pri kasanii sfer [On some regularities that occur when spheres are touched]. Prikladnaja geometrija i inzhenernaja grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1981, I. 32, pp. 113-115.
15. Sal'kov N.A. O ratsional'nom graficheskom reshenii zadach po teme "Sopryazheniya" [On the rational graphic solution of problems on the topic "Conjugation"]. Sbornik nauchno-metodicheskikh statej po nachertatel'noj geometrii i inzhenernoj grafike [Collection of scientific and methodical articles on descriptive geometry and engineering graphics]. Moscow, Vysshaya shkola Publ., 1985, I. 12, pp. 42-47.
16. Sal'kov N.A. Svojstva tsiklid Djupena i ikh primenenie. Chast` 1 [Properties of Dupin cyclides and their application. Part 1]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 1, pp. 16-25. DOI:https://doi.org/10.12737/10454.
17. Sal'kov N.A. Svojstva tsiklid Dyupena i ikh primenenie. Chast' 2 [Properties of Dupin cyclides and their application. Part 2]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 2, pp. 9-23. DOI:https://doi.org/10.12737/12164.
18. Sal'kov N.A. Svojstva tsiklid Dyupena i ikh primenenie. Chast' 3: soprjazhenija [Properties of Dupin cyclides and their application. Part 3: conjugation]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 4, pp. 3-14. DOI:https://doi.org/10.12737/17345.
19. Sal'kov N.A. Svojstva tsiklid Dyupena i ikh primenenie. Chast' 4: prilozhenija [Properties of Dupin cyclides and their application. Part 4: Applications]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 1, pp. 21-32. DOI:https://doi.org/10.12737/17347.
20. Sal'kov N.A. Tsiklida Dyupena i ee prilozhenie [Cyclid Dupin and its application]. Moscow, INFRA-M Publ., 2016. 142 p.
21. Sal'kov N.A. Tsiklida Dyupena i krivje vtorogo porjadka. Chast' 1 [Cyclid Dupin and curves of the second order. Part 1]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 19-28. DOI:https://doi.org/10.12737/19829.
22. Sal'kov N.A. Tsiklida Dyupena i krivje vtorogo porjadka. Chast' 2 [Cyclid Dupin and curves of the second order. Part 2]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 17-28. DOI:https://doi.org/10.12737/21530.
23. Sal'kov N.A. Ellips: kasatel`naja i normal` [Ellipse: tangent and normal]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 35-37. DOI:https://doi.org/10.12737/2084.
24. Yakubovskiy A.M. Issledovanija analiticheskogo metoda zadanija tsiklid Djupena pri vy`javlenii ikh iz kongruentsii okruzhnostej [Investigations of the analytical method for specifying Dupin cyclides when they are detected from congruences of circles]. Trudy` UDN [Proceedings of UDN]. Moscow, Prikladnaya geometriya Publ., 1971, V. 53, I. 4, pp. 26-40.
25. Dupin Ch. Développements de géometrié, P., 1813.