LOCI OF POINTS EQUIDISTANT FROM TWO GEOMETRIC OBJECTS. PART 6: LOCI OF POINTS EQUIDISTANT FROM A SPHERE AND A CYLINDRICAL SURFACE OF EQUAL DIAMETERS
Abstract and keywords
Abstract:
This article examines the loci of points (LoPs) equidistant from a sphere and a cylindrical surface of equal diameter. The properties of the resulting LoPs surfaces are studied. When constructing a LoPs equidistant from a cylindrical surface Γ and a sphere Δ, four sheets of surfaces are always obtained. The first sheet is when both surfaces are increasing, the second when both are decreasing. Two more sheets are formed when one of the given surfaces is increasing and the other is decreasing, and vice versa. Four possible positions of the sphere and cylindrical surface are considered: 1. 6.5.1.1. The center of the sphere Δ is on the axis of the cylindrical surface Γ (a = 0). The LoPs are the two-sheeted plane Σ 6.5.1.1 and the perpendicular paraboloid of revolution (symmetric) Ψ6.5.1.1 . One of the surfaces is imaginary. 2. 6.5.1.2. The sphere Δ and the cylindrical surface Γ intersect (0 < a < R): the LoPs is one imaginary and two real surfaces: • a two-sheeted parabolic cylindrical surface λ6.5.1.2 ; • an asymmetric perpendicular paraboloid Ψ6.5.1.1 . Option 6.5.1.1. is a special case of option 6.5.1.2. 3. 6.5.1.3. A sphere and a cylindrical surface of equal diameter touch (have external tangency) (a = R). In this case, all four surfaces are real, but one is represented by a line—zero quadric of the second order. The LoPs are: • a two-sheeted parabolic cylindrical surface λ. The surface λ is a LoPs equidistant from the sphere Δ and the cylindrical surface Γ in all four cases of their relative positions. 5. 6.5.1.4. The sphere Δ and the cylindrical surface Γ are at a distance from each other (a > R), the LoPs are three real surfaces with four sheets: • a two-sheeted parabolic surface λ; • a quartic surface Ψ, its frontal and horizontal outlines are a parabola and a branch of a hyperbola, respectively; • a quartic surface Σ, a parabola, and a branch of a hyperbola are the frontal and horizontal outlines of Σ, respectively.

Keywords:
geometry, descriptive geometry, loci of points, analytical geometry, sphere, cylinder, perpendicular paraboloid of revolution
References

1. Adamyan V.G. Geometricheskoe mesto tochek s postoyannym otnosheniem napravlennogo rasstoyaniya do fiksirovannoy pryamoy k rasstoyaniyu do fokusa [Tekst] / V.G. Adamyan, G.D. Anamov // Prikladnaya geometriya i inzhenernaya grafika. — 1977. — Vyp. 23. — S. 108–111.

2. Anamov G.D. Primenenie prostranstvennyh geometricheskih mest v nachertatel'noy geometrii [Tekst]: diss. … kand. tehn. nauk / G.D. Anamov. — Kiev, 1945. — 150 s.

3. Bolotina E.V. Geometricheskoe modelirovanie poverhnostey, ekvidistantnyh ploskosti, i cilindricheskoy poverhnosti / E.V. Bolotina, K.T. Egiazaryan, V.I. Vyshnepol'skiy // KOGRAF-2023: Sbornik materialov 33-y Vserossiyskoy molodezhnoy nauchno-prakticheskoy konferencii po graficheskim informacionnym tehnologiyam i sistemam, Nizhniy Novgorod, 17–20 aprelya 2023 goda. — Nizhniy Novgorod: Izd-vo Nizhegorodskogo gos. tehnicheskogo un-ta im. R.E. Alekseeva, 2023. — S. 67–73.

4. Volkov V.Ya. Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya: uchebnik [Tekst] / V.Ya. Volkov — Omsk: Izd-vo SibADI, 2010. — 252s. EDN: https://elibrary.ru/RAXDXN

5. Volkov V.Ya. Sbornik zadach i uprazhneniy po nachertatel'noy geometrii (k uchebniku «Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya») [Tekst] / V.Ya. Volkov, V.Yu. Yurkov, K.L. Panchuk, N.V. Kaygorodceva. — Omsk: Izd-vo SIBADI, 2010. 74 s. EDN: https://elibrary.ru/RAXDWJ

6. Vygodskiy M.Ya. Spravochnik po vysshey matematike [Tekst] / M.Ya. Vygodskiy. — M.: AST: Astrel', 2008. 509 s. EDN: https://elibrary.ru/QJTUPF

7. Vyshnepol'skiy V.I. Vserossiyskiy studencheskiy konkurs «Innovacionnye razrabotki» [Tekst] / V.I. Vyshnepol'skiy, N.S. Kadykova, N.I. Prokopov // Geometriya i grafika. — 2016. — T. 4. — № 4. — S. 69–86. DOI:https://doi.org/10.12737/22842 DOI: https://doi.org/10.12737/22845; EDN: https://elibrary.ru/XKYRWN

8. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 1 [Tekst] / V.I. Vyshnepol'skiy, N.A. Sal'kov, E.V. Zavarihina // Geometriya i grafika. — 2017. T. 5. — № 3. — S. 21–35. — DOI:https://doi.org/10.12737/22842 DOI: https://doi.org/10.12737/article_59bfa3beb72932.73328568; EDN: https://elibrary.ru/ZGWELV

9. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 2 [Tekst] / V.I. Vyshnepol'skiy, O.L. Dallakyan, E.V. Zavarihina // Geometriya i grafika. — 2017. T. 5. — № 4. — S. 15–23. — DOI:https://doi.org/10.12737/22842 DOI: https://doi.org/10.12737/article_5a17f9503d6f40.18070994; EDN: https://elibrary.ru/ZWSRLL

10. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 3 [Tekst] / V.I. Vyshnepol'skiy, K.A. Kirshanov, K.T. Egiazaryan // Geometriya i grafika. 2018. — T. 6. — № 4. — S. 3–19. — DOI: 10.12737/ article_5c21f207bfd6e4.78537377 DOI: https://doi.org/10.12737/article_5c21f207bfd6e4.78537377; EDN: https://elibrary.ru/YTZUXR

11. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 4: Geometricheskie mesta tochek, ravnoudalennyh ot dvuh sfer [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, D.S. Peh // Geometriya i grafika. — 2021. T. 9. — № 3. — S. 12–29. — DOI:https://doi.org/10.12737/2308-48982021-9-3-12-29 DOI: https://doi.org/10.12737/2308-4898-2021-9-3-12-29; EDN: https://elibrary.ru/WGHOZY

12. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 5: Geometricheskie mesta tochek, ravnoudalennyh ot sfery i ploskosti / V.I. Vyshnepol'skiy, E.V. Zavarihina, K.T. Egiazaryan // Geometriya i grafika. — 2021. — T. 9. — № 4. — S. 22–34. — DOIhttps://doi.org/10.12737/2308-4898-2021-9-4-22-34 DOI: https://doi.org/10.12737/2308-4898-2022-9-4-22-34; EDN: https://elibrary.ru/MGDBLH

13. Vyshnepol'skiy V.I. Metodicheskie osnovy podgotovki i provedeniya olimpiad po graficheskim disciplinam v vysshey shkole [Tekst]: dis. … kand. ped. nauk / V.I. Vyshnepol'skiy. — M., 2000. — 250 s. EDN: https://elibrary.ru/NLTLGJ

14. Glogovskiy V.V. Ekvidistanty. Voprosy teorii, prilozheniy i metodiki prepodavaniya nachertatel'noy geometrii [Tekst] / V.V. Glogovskiy // Trudy Rizhskoy nauchno-metodicheskoy konferencii. — Riga: Izd-vo RIIGVF, 1960. — 422 s.

15. Glogovskiy V.V. Ekvidistantnye mnozhestva [Tekst] / V.V. Glogovskiy // Nauchnye zapiski L'vovskogo politehnicheskogo instituta. — 1955. — Vyp. 1. — T. 30. S. 72–90.

16. Glogovskiy V.V. Primenenie ekvidistant k resheniyu zadach [Tekst] / V.V. Glogovskiy // Nauchnye zapiski L'vovskogo politehnicheskogo instituta. — 1956. Vyp. 2. — T. 38. — S. 72–90.

17. Gumen N.S. Paraboloidy chetvertogo poryadka kak geometricheskie mesta tochek, ravnoudalennyh ot tora i pryamoy parallel'noy ego osi [Tekst] / N.S. Gumen, O.V. Smerichko // Prikladnaya geometriya i inzhenernaya grafika. — 1991. — Vyp. 51. — S. 46–52.

18. Gumen N.S. Paraboloidy chetvertogo poryadka kak geometricheskie mesta tochek, ravnoudalennyh ot tochki i krugovogo cilindra [Tekst] / N.S. Gumen, M.F. Skorin, V.P. Kravchuk // Prikladnaya geometriya i inzhenernaya grafika. — 1986. — Vyp. 42. — S. 32–33.

19. Gumen N.S. Konusy i cilindry 2-go poryadka kak geometricheskie mesta tochek, ravnoudalennyh ot tochki i okruzhnosti [Tekst] / N.S. Gumen, G.A. Kozub // Prikladnaya geometriya i inzhenernaya grafika. — 1987. Vyp. 43. — S. 65–67.

20. Gumen N.S. Geometricheskoe mesto tochek, ravnoudalennyh ot sfery i pryamoy [Tekst] / N.S. Gumen, A.M. Marhelyuk // Prikladnaya geometriya i inzhenernaya grafika. — 1983. — Vyp. 35. — S. 130–133. DOI: https://doi.org/10.1002/star.19830350406

21. Gumen N.S. K ispol'zovaniyu metoda geometricheskih mest pri konstruirovanii krivyh liniy i poverhnostey [Tekst] / N.S. Gumen, E.V. Sarnackaya // Geometrografiya. — 1977. — Vyp. 1. — S. 58–66.

22. Gumen N.S. O geometricheskih mestah tochek, proporcional'no udalennyh ot dvuh pryamyh [Tekst] / N.S. Gumen, E.V. Sarnackaya // Geometrografiya. — 1977. — Vyp. 2. S. 43–51.

23. Gumen N.S. O geometricheskih mestah tochek, rasstoyaniya kotoryh ot pary okruzhnostey ploskosti svyazanny opredelennoy funkcional'noy zavisimost'yu [Tekst] / N.S. Gumen, E.V. Sarnackaya // Geometrografiya. — 1977. Vyp. 2. — S. 52–65.

24. Davydkin M.A. Modelirovanie i issledovanie poverhnostey, ravnoudalennyh ot pryamoy i cilindricheskoy poverhnostey / M.A. Davydkin, V.I. Vyshnepol'skiy // KOGRAF-2022: sbornik materialov 32-y Vserossiyskoy nauchno-prakticheskoy konferencii po graficheskim informacionnym tehnologiyam i sistemam, Nizhniy Novgorod, 18–21 aprelya 2022 goda. — Nizhniy Novgorod: Izd-vo Nizhegorodskogo gos. tehnicheskogo un-ta im. R.E. Alekseeva, 2022. — S. 108–115. — DOIhttps://doi.org/10.46960/kograph_2022_108

25. Dimantov E.A. Issledovanie nekotoryh geometricheskih mest [Tekst] / E.A. Dimantov, A.A. Burshteyn // Trudy LISI. — 1974. — Vyp. 100. — S. 81–105.

26. Egiazaryan K.T. Issledovanie geometricheskih mest tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur [Tekst] / K.T. Egiazaryan, V.I. Vyshnepol'skiy // Sbornik materialov 31-y Vserossiyskoy nauchno-prakticheskoy konferencii po graficheskim informacionnym tehnologiyam i sistemam. — Nizhniy Novgorod, 2021. — C. 118–123. — DOIhttps://doi.org/10.46960/43791586_2021_118 EDN: https://elibrary.ru/FGHTVT

27. Eliseev N.A. Etyudy po nachertatel'noy geometrii professora D.I. Kargina. Sovershenstvovanie podgotovki uchaschihsya i studentov v oblasti grafiki, konstruirovaniya i standartizacii [Tekst] / N.A. Eliseev // Mezhvuzovskiy nauchno-metodicheskiy sbornik. — Saratov: Izd-vo SGTU, 2004. — S. 56–58.

28. Ivanov G.S. Nachertatel'naya geometriya: — 3-e izd.[Tekst] / G.S. Ivanov. — M.: Izd-vo MGUL, 2012. — 340 s.

29. Ivanov G.S. Princip dvoystvennosti — teoreticheskaya baza vzaimosvyazi sinteticheskih i analiticheskih sposobov resheniya geometricheskih zadach [Tekst] / G.S. Ivanov, I.M. Dmitrieva // Geometriya i grafika. — 2016. T. 4. — № 3. — S. 3–10. — DOI:https://doi.org/10.12737/21528 EDN: https://elibrary.ru/WMHYUJ

30. Ivanov G.S. Teoreticheskie osnovy nachertatel'noy geometrii [Tekst] / G.S. Ivanov. — M.: Mashinostroenie, 1998. — 458 s.

31. Kaygorodceva N.V. Poverhnosti v nachertatel'noy geometrii i logiko-geometricheskoe myshlenie [Tekst] / N.V. Kaygorodceva — Omsk: Izd-vo OmGTU, 2013. — 184 s.

32. Kargin D.I. Etyudy po nachertatel'noy geometrii. Geometricheskie mesta [Tekst] / D.I. Kargin. — PFA RAN, r. 802, op. 1, ed. hr. 148, 1939–1940 gg. 405 l.

33. Krivoshapko S.N. Enciklopediya analiticheskih poverhnostey [Tekst] / S.N. Krivoshapko, V.N. Ivanov. — M.: LIBROKOM, 2019. — 560 s.

34. Krivoshapko S.N. Analiticheskie poverhnosti v arhitekture zdaniy, konstrukciy i izdeliy: Monografiya [Tekst] / S.N. Krivoshapko, I.A. Mamieva. — M.: LIBROKOM, 2012. — 328 s. EDN: https://elibrary.ru/QJZEGJ

35. Lyashkov A.A. Metodologiya geometricheskogo i komp'yuternogo modelirovaniya formoobrazovaniya tehnicheskih poverhnostey [Tekst]: avtoref. dis. … d-ra tehn. nauk: 05.01.01 / A.A. Lyashkov. — Nizhniy Novgorod, 2014. — 35 s. EDN: https://elibrary.ru/ZPFYMN

36. Naumovich N.V. Geometricheskie mesta v prostranstve i zadachi na postroenie [Tekst] / N.V. Naumovich. — M.: Gos. uchebno-pedagogicheskoe izd-vo, 1962. — 152 s.

37. Obuhova V.S. Poetapnoe modelirovanie tehnicheskih poverhnostey [Tekst] / V.S. Obuhova. // Referativnaya informaciya o zakonchennyh nauchno-issledovatel'skih rabotah v vuzah Ukrainskoy SSR: Prikladnaya geometriya i inzhenernaya grafika. — Vyp. 1. — Kiev: Vischa shkola, 1977. — S. 5–6.

38. Pavlov V.E. Dmitriy Ivanovich Kargin, 1880–1949 [Tekst] / V.E. Pavlov, B.F. Tarasov. — SPb.: Nauka, 1998. — 272 s.

39. Peh D.S. Geometricheskoe modelirovanie poverhnostey, ravnoudalennyh ot dvuh cilindricheskih poverhnostey, v srede Wolfram Mathematica / D.S. Peh, A.A. Sycheva // KOGRAF-2024: sbornik materialov 34-y Vserossiyskoy molodezhnoy nauchno-prakticheskoy konferencii po graficheskim informacionnym tehnologiyam i sistemam, Nizhniy Novgorod, 15–17 aprelya 2024 goda. — Nizhniy Novgorod: Izd-vo Nizhegorodskogo gos. tehn. un-ta im. R.E. Alekseeva, 2024. S. 99–108.

40. Posvyanskiy A.D. Pyat'desyat zadach povyshennoy trudnosti [Tekst] / A.D. Posvyanskiy. — Kalinin: Izd-vo KPI, 1970. — 41 s.

41. Sal'kov N.A. Ciklida Dyupena i krivye vtorogo poryadka. Chast' 1 / N.A. Sal'kov // Geometriya i grafika. 2016. — T. 4. — № 2. — S. 19–28. — DOI:https://doi.org/10.12737/19829. EDN: https://elibrary.ru/WJEJNH

42. Sal'kov N.A. Rasshirenie variantov formirovaniya lineychatyh poverhnostey / N.A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. — № 1. — S. 3–11. — DOIhttps://doi.org/10.12737/2308-4898-2024-12-1-3-11 EDN: https://elibrary.ru/IRNBEQ

43. Sal'kov N.A. Izuchenie geometrii kak vazhneyshiy sposob razvitiya evristicheskogo myshleniya / N.A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. — № 1. S. 22–31. — DOIhttps://doi.org/10.12737/2308-4898-2024-12-1-22-31 EDN: https://elibrary.ru/RDLBIM

44. Sal'kov N.A. Klassifikaciya lineychatyh poverhnostey / N.A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. № 3. — S. 3–12. — DOIhttps://doi.org/10.12737/2308-4898-2024-12-33-12 DOI: https://doi.org/10.12737/2308-4898-2024-12-3-3-12; EDN: https://elibrary.ru/SVGSHK

45. Sal'kov N.A. Opredelenie rasstoyaniy mezhdu geometricheskimi figurami interaktivnym metodom / N.A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. № 4. — S. 3-14. — DOIhttps://doi.org/10.12737/2308-4898-2024-12-43-14 DOI: https://doi.org/10.12737/2308-4898-2024-12-4-3-14; EDN: https://elibrary.ru/SDYIHZ

46. Seregin V.I. Mezhdisciplinarnye svyazi nachertatel'noy geometrii i smezhnyh razdelov vysshey matematiki [Tekst] / V.I. Seregin, G.S. Ivanov, I.M. Dmitrieva, K.A. Murav'ev // Geometriya i grafika. — 2013. T. 1. — № 3–4. — S. 8–12. — DOI:https://doi.org/10.12737/2124 EDN: https://elibrary.ru/RSYDCP

47. Seregin V.I. Nauchno-metodicheskie voprosy podgotovki studentov k olimpiadam po nachertatel'noy geometrii [Tekst] / V.I. Seregin, G.S. Ivanov, I.F. Borovikov // Geometriya i grafika. — 2017. — T. 5. — № 1. S. 73–81. — DOI:https://doi.org/10.12737/25126 EDN: https://elibrary.ru/YJKKYH

48. Sibircev S.F. O geometricheskih mestah tochek [Tekst] / S.F. Sibircev // Izvestiya Tomskogo politehnicheskogo instituta im. S.M. Kirova. — 1966. — T. 143. S. 57–69.

49. MathCurve.com: enciklopediya zamechatel'nyh matematicheskih krivyh i poverhnostey: [sayt]. — 2017. — URL: https://mathcurve.com/surfaces.gb/whitney/whitney.shtml (data obrascheniya: 19.05.2025).

50. MathCurve.com: enciklopediya zamechatel'nyh matematicheskih krivyh i poverhnostey: [sayt]. — 2018. URL: https://mathcurve.com/courbes3d.gb/viviani/viviani.shtml (data obrascheniya: 12.10.2025).

Login or Create
* Forgot password?