employee from 01.10.2008 until now
Russian Federation
In modern textbooks on analytical geometry the thought is missed out, how analytical geometry was developed. On the one hand, descriptive geometry formed much later than analytical geometry, and on the other hand, without elements of descriptive geometry was impossible to create a theory of analysis in geometry, although the first attempts of considering of geometry belong to the times of Ancient Greece. In the author´s opinion the development of the analytical calculations have served a variety of images, including orthogonal and axonometric projections. As descriptive geometry is the theory of images, it thus follows that descriptive geometry was the basis for creating of the analytical geometry. In the proposed work it is proved by the simple and clear. When the images in plane are viewed, we are dealing with a 2D drawing with simple planar geometric figures. There is no presence of descriptive geometry, although some of our "partners" considers the descriptive geometry as geometry on a plane. Let´s leave this confusion on their conscience. But as soon as we deal with space, we cannot do without the axonometric drawing, and axonometry is a section of descriptive geometry. So we can predicate, that analytic geometry is based on descriptive geometry. On the basis of predetermined outcome criterion of geometric shapes — belonging of point to this geometric figure, it is possible to obtain equations of various geometrical figures. This condition is used for the analytical derivation of the equations. There are examples of receiving through the orthogonal projections of various geometric shapes their analytical equations — equations of a straight line, plane, surfaces of rotation (sphere, ellipsoid, paraboloid, conical surfaces of rotation, one-sheet hyperboloid, duopolistic hyperboloid); position and metrical tasks are considered.
geometry, descriptive geometry, analytical geometry, higher education, geometric education.
1. Aleksandrov P.S. Lekcii po analiticheskoj geometrii [Lectures on analytic geometry]. Moscow, Nauka Publ., 1968. 912 p.
2. Bahvalov S.V., Babushkin L.I., Ivanickaja V.P. Analiticheskaja geometrija [Analytical geometry]. Moscow, Uchpedgiz Publ., 1962. 368 p.
3. Beklemishev D.V. Kurs analiticheskoj geometrii i linejnoj algebry [Course of analytical geometry and linear algebra]. Moscow, Nauka Publ., 1984. 320 p.
4. Gevorgyan V.V. Avtomatizatsiya karkasno-parametricheskogo metoda zadaniya i konstruirovaniya karkasov poverkhnostey. Kand. Diss. [Automation frame-parametric methods of defining and constructing frameworks surfaces. Cand. Diss.]. Odessa, 1978.
5. Gershman I.P. Konstruirovanie poverkhnostey putem vydeleniya ikh nepreryvnykh lineychatykh karkasov iz mnogoparametricheskikh mnozhestv liniy [Design surfaces by highlighting their non-continuous bar frames from a multivariate sets of lines]. Trudy UDN im. P. Lumumby. Moscow, 1967. V. 26: Matematika. I. 3: Prikladnaya geometriya, pp. 33-47. (in Russian).
6. Gershman I.P. Mnogoparametricheskie mnozhestva geometricheskikh figur i ikh koordinatnye podmnozhestva [Multivariate multiple geometric figures and their coordinate subset]. Proceedings of the Peoples´ Friendship University named after P. Lumumba. Moscow, 1971. V. III, Prikladnaya geometriya [Applied geometry]. I. 4, pp. 41-59. (in Russian).
7. Girsh A.G. Fokusy algebraicheskih krivyh [The foci of algebraic curves]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 3, pp. 4-17. DOI:https://doi.org/10.12737/14415 (in Russian).
8. Grjaznov Ja.A. Otsek kanalovoj poverhnosti kak obraz cilindra v ras-slojaemom obrazovanii [Bay canal surface as a cylinder in rastlayamad education]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 17-19. DOI:https://doi.org/10.12737/2077 (in Russian).
9. Gurskij E.I., Ershova V.V. Osnovy linejnoj algebry i analiticheskaja geometrija [Fundamentals of linear algebra and analytical geometry]. Minsk, Vysshaja shkola Publ., 1965. 263 p.
10. Delone B.N., Rajkov D.A. Analiticheskaja geometrija [Analytical geometry]. T. 1. - M.-L.: Gostehizdat, 1948. 456 s.
11. Efimov N.E. Kratkij kurs analiticheskoj geometrii [A short course in analytical geometry]. Moscow, Nauka Publ., 1975. 272 p.
12. Ivanov G.S. Konstruirovanie tekhnicheskikh poverkhnostey (matematicheskoe modelirovanie na osnove nelineynykh preobrazovaniy) [Design of technical surfaces (mathematical modelirovanie based on nonlinear transformations)]. Moscow, Mashinostroenie Publ., 1987.
13. Ivanov G.S. Konstruktivnyj sposob issledovanija svojstv parametricheski zadannyh krivyh [Constructive way to study the properties of parametrically defined curves]. 2014, V. 2, I. 2, pp. 3-6. DOI:https://doi.org/10.12737/6518 (in Russian).
14. Kislookiy V.N., Sedletskaya N.I., Kharchenko A.I. Avtomatizatsiya predstavleniya geometrii diskretnykh modeley v zadachakh prochnostnykh raschetov lopatok parovykh turbin [Automation before presentation of the geometry of discrete models in problems of stress analysis of steam turbine blades]. Prikl. geometriya i inzh. grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel´nik Publ., 1979, I. 28, pp. 19-23.
15. Korn G., Korn T. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov [Handbook of mathematics for scientists and engineers]. Moscow, Nauka Publ., 1984. 832 p.
16. Manevich V.A., Kotov I.I., Zengin A.R. Analiticheskaja geometrija s teoriej izobrazhenij [Analytical geometry with the theory of images]. Moscow, Vysshaja shkola Publ., 1969. 304 p.
17. Monzh G. Nachertatel´naja geometrija [Descriptive geometry]. Leningrad, Izdatel´stvo Akademii Nauk SSSR Publ., 1947. 292 p.
18. Mushelishvili N.I. Kurs analiticheskoj geometrii [The course of analytical geometry]. Moscow, Leninrad, Gostehizdat Publ., 1947. 644 p.
19. Pogorelov A.V. Lekcii po analiticheskoj geometrii [Lectures on analytical geometry]. Har´kov, Izd-vo Har´kovskogo gos. un-ta Publ., 1963. 183 p.
20. Podgornyy A.L. Geometricheskoe modelirovanie prostranstvennykh konstruktsiy. Dokt. Diss. [Geometric modeling of spatial structures. Doct. Diss.]. Moscow, 1975.
21. Privalov I.I. Analiticheskaja geometrija [Analytical geometry]. Moscow, Gos. izdatel´stvo tehniko-teoreticheskoj literatury Publ., 1957. 300 p.
22. Rid M. Algebraicheskaja geometrija dlja vseh [Algebraic geometry for all]. Moscow, Mir Publ., 1991. 151 p.
23. Ryzhov N.N. Algoritmy perekhoda ot konstruktivno-kinematicheskogo zadaniya poverkhnosti k analiticheskomu [The algorithms of the transition from structurally-kinematic-Denmark surface to analysis]. Trudy UDN im. P. Lumumby [Proceedings of the Peoples´ Friendship University named after P. Lumumba]. Moscow, 1971, V. 53, I. 4, pp. 17-25. (in Russian).
24. Ryzhov N.N., Lovetskiy K.P., Sal´kov N.A. Matematicheskoemodelirovanie proezzhey chasti avtomobil´nykh dorog [Mathematical modelling of the carriageway roads]. Moscow, MADI Publ., 1988. (in Russian).
25. Savjolov A.A. Ploskie krivye. Sistematika, svojstva, primenenija. (Spravochnoe rukovodstvo) [Plane curves. Taxonomy, properties, applications. (Reference manual)]. Moscow, FM Publ., 1960. 293 p.
26. Salkov N.A. Grafo-analiticheskoe reshenie nekotoryh chastnyh zadach kvadratichnogo programmirovanija [Graph-analytic Solution of Some Special Problems of Quadratic Programming] Geometrija i grafika [Geometry and graphics]. 2014, V. 2, I. 1, pp. 3-8. DOI:https://doi.org/10.12737/3842 (in Russian).
27. Salkov N.A. Kinematicheskoe sootvetstvie vrashhajushhihsja prostranstv [The kinematic compliance of rotating spaces] Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 4-10. DOI:https://doi.org/10.12737/2074 (in Russian).
28. Salkov N.A. Modelirovanie avtovobil´nyh dorog [Modeling roads]. Moscow, INFRA-M Publ., 2012. Available at: http://www.znanium.com/catalog.php#none/
29. Salkov N.A. Nachertatel´naja geometrija. Bazovyj kurs [Descriptive geometry. Basic course]. M.: INFRA-M, 2013. 184 s.
30. Salkov N.A. Ob odnom graficheskom postroenii giperboly [About one graphical building hyperbola]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and engineering graphics]. Kiev, Budivel’nik Publ., 1982, I. 34, pp. 95-98. (in Russian)
31. Salkov N.A. Parametricheskaja geometrija v geometricheskom modelirovanii [Parametric Geometry in Geometric Modeling] Geometrija i grafika [Geometry and graphics]. 2014, V. 2, I. 3, pp. 7-13. DOI:https://doi.org/10.12737/6519 (in Russian).
32. Salkov N.A. Jellips: kasatel´naja i normal´ [Ellipse: the tangent and normal]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 35-37. DOI:https://doi.org/10.12737/2084 (in Russian).
33. Sokolova N.Yu. Parametrizatsiya figur i konstruirovanie ogibayushchey poverkhnosti [Parameterization of shapes and design envelope surface]. Trudy UDN im. P. Lumumby [Proceedings of the Peoples´ Friendship University named after P. Lumumba]. Moscow, 1975. V. 73. Mathematics. I. 5: Applied Geometry, pp. 29-39. (in Russian).
34. Yakunin V.I. Teoreticheskie osnovy formirovaniya modeley poverkhnostey [The theoretical basis for the formation of surface models]. Moscow, MAI Publ., 1985.
35. Finikov S.P. Analiticheskaja geometrija [Analytical geometry]. Moscow, Uchpedgiz Publ., 1952.
36. Foks A., Pratt M. Vychislitel´naya geometriya. Primenenie v proektirovanii i na proizvodstve [Computational geometry. Application in engineering management and production]. Moscow, Mir Publ., 1982.
37. Frolov S.A., Pokrovskaja M.V. V poiskah nachala: Rasskazy o nachertatel´noj geometrii [In search of a beginning: Stories of descriptive geometry]. Minsk, «Vyshjejshaja shkola» Publ., 1985. 189 p.
38. Shal´ M. Istoricheskij obzor proishozhdenija i razvitija geometricheskih metodov [Historical review of the origin and development of geometric methods]. M., 1883.