Аннотация и ключевые слова
Аннотация (русский):
We discuss results of test observations of the 3–6 GHz range array of the Siberian Radio Heliograph (SRH). A method for calibrating brightness temperatures of images was verified using measurements of the brightness temperature of the quiet Sun at a minimum between solar activity cycles 20 and 21 known in the literature. The obtained time dependences of the integral solar flux at 2.8 GHz are similar to those measured at the Dominion Radio Astrophysical Observatory (DRAO), but the absolute values of SRH fluxes are lower relative to the DRAO fluxes by 10–15 %. The spectral density of the solar microwave flux at a frequency of 2.8 GHz, the so-called F10.7 index, is one of the main solar activity indices used as input parameters in models of Earth’s ionosphere. The paper considers the relationship between total radio fluxes and changes in the structure of sources on the solar disk during an interval of 50 days. During the period of daily observations from September 1 to October 20, 2021, the number of active regions on the disk changed several times, and the integral flux density at 2.8 GHz changed up to 1.5 times. We determine the relative contributions to the integral flux of bremsstrahlung of near-limb brightenings and plage regions, as well as bremsstrahlung in magnetic fields of active regions. The measured brightness temperatures of SRH radio maps are compared to the model temperatures calculated from observations of extreme ultraviolet emission (EUV) with the AIA/SDO telescope. The results of the analysis can be used to organize regular measurements of the corrected solar activity proxy index F10.7 at SRH, in which the contribution of gyroresonance emission is excluded.

Ключевые слова:
total solar flux, F10.7 index
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Altyntsev A.T., Lesovoi S.V., Globa M.V., Gubin A.V., Kochanov A.A., Grechnev V.V., Ivanov E.F., et al. Multiwave Siberian Radioheliograph. SolarTerrestrial Physics. 2020, vol. 6, iss. 2, pp. 30–40. DOI:https://doi.org/10.12737/stp62202003.

2. Bilitza D., Reinisch B.W. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res. 2008, vol. 42, iss. 4, pp. 599–609. DOI:https://doi.org/10.1016/j.asr.2007.07.048.

3. Borovik V.N., Kurbanov M.S., Makarov V.V. Distribution of radio brightness of the quiet Sun in the 2-centimeter to 32-centimeter range. Soviet Astronomy. 1992, vol. 36, pp. 656.

4. CASA Team, Bean B., Bhatnagar S., et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publications of the Astronomical Society of the Pacific. 2022, vol. 134, iss. 1041, id. 114501, 17 p. DOI:https://doi.org/10.1088/1538-3873/ac9642.

5. Christiansen W.N., Warburton J.A. The distribution of radio brightness over the solar disk at a wavelength of 21 centimetres. III. The quiet Sun two-dimensional observations. Australian J. Phys. 1955, vol. 8, pp. 474. DOI:https://doi.org/10.1071/PH550474.

6. Covington A.E. Solar radio emission at 10.7 cm, 1947–1968. J. Royal Astron. Society of Canada. 1969, vol. 63, pp. 125.

7. Dudok de Wit T., Bruinsma S., Shibasaki K. Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather and Space Climate. 2014, vol. 4, id. A106, 13 p. DOI:https://doi.org/10.1051/swsc/2014003.

8. Felli M., Lang K.R., Willson R.F. VLA observations of solar active regions. I. The slowly varying component. Astrophys. J. 1981, vol. 247, pp. 325–347. DOI:https://doi.org/10.1086/159041.

9. Fleishman G.D., Kuznetsov A.A., Landi E. Gyroresonance and free-free radio emissions from multithermal multicomponent plasma. Astrophys. J. 2021, vol. 914, iss. 1, id. 52, 16 p. DOI:https://doi.org/10.3847/1538-4357/abf92c.

10. Gary D., Yu S., Chen B., LaVilla V. A new view of the solar atmosphere: daily full-disk multifrequency radio images from EOVSA. American Astronomical Society Meeting Abstracts. 2020, vol. 235, p. 385.0.

11. Jacchia L.G. Revised Static Models of the thermosphere and exosphere with empirical temperature profiles. SAO Special Repp. 1971, vol. 332.

12. Krueger A. Introduction to Solar Radio Astronomy and Radio Physics. 1979, 330 p.

13. Kundu M.R. Solar Radio Astronomy. 1965.

14. Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. The multifrequency Siberian Radioheliograph. Solar Phys. 2012, vol. 280, iss. 2, pp. 651–661. DOI:https://doi.org/10.1007/s11207-012-0008-7.

15. Saint-Hilaire PP., Hurford G.J., Keating G., et al. Allen Telescope Array multi-frequency observations of the Sun. Solar Phys. 2012, vol. 277, iss. 2, pp. 431–445. DOI:https://doi.org/10.1007/s11207-011-9906-3.

16. Schmahl E.J., Kundu M.R. Microwave proxies for sunspot blocking and total irradiance. J. Geophys. Res. 1995, vol. 100, no. A10, pp. 19851–19864. DOI:https://doi.org/10.1029/95JA00677.

17. Schmahl E.J. Kundu M.R. Synoptic Radio Observations. Synoptic Solar Physics. 1998, vol. 140, p. 387.

18. Schonfeld S.J., White S.M., Henney C.J., et al. Coronal sources of the solar F10.7 radio flux. Astrophys. J. 2015, vol. 808, iss. 1, id. 29, 10 p. DOI:https://doi.org/10.1088/0004-637X/808/1/29.

19. Schonfeld S.J., White S.M., Hock-Mysliwiec R.A., McAteer R.T.J. The slowly varying corona. I. Daily differential emission measure distributions derived from EVE spectra. Astrophys. J. 2017, vol. 844, iss. 2, article id. 163, 16 p. DOI:https://doi.org/10.3847/1538-4357/aa7b35.

20. Su Y., Veronig A.M., Hannah I.G., et al. Determination of differential emission measure from solar extreme ultraviolet images. Astrophys. J. 2018, vol. 856, iss. 1, article id. L17, 10 p. DOI:https://doi.org/10.3847/2041-8213/aab436.

21. Swarup G., Kakinuma T., Covington A.E., et al. High-resolution studies of ten solar active regions at wavelengths of 3–21 cm. Astrophys J. 1963, vol. 137, p. 1251. DOI:https://doi.org/10.1086/147601.

22. Tapping K.F. Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7-cm flux. J. Geophys. Res. 1987, vol. 92, pp. 829–838. DOI: 10.1029/ JD092iD01p00829.

23. Tapping K.F., DeTracey B. The origin of the 10.7-cm flux. Solar Phys. 1990, vol. 127, iss. 2, pp. 321–332. DOI: 10.1007/ BF00152171.

24. Tapping K.F., Valdés J.J. Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Solar Phys. 2011, vol. 272, iss. 2, article id. 337. DOI:https://doi.org/10.1007/s11207-011-9827-1.

25. Tapping K.F., Cameron H.T., Willis A.G. S-component sources at 21 cm wavelength in the rising phase of cycle 23. Solar Phys. 2003, vol. 215, iss. 2, pp. 357–383. DOI: 10.1023/ A:1025645908639.

26. Tobiska W.K., Bouwer S.D., Bowman B.R. The development of new solar indices for use in thermospheric density modeling. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, iss. 5, pp. 803–819. DOI:https://doi.org/10.1016/j.jastpp.2007.11.001.

27. Zirin H., Baumert B.M., Hurford G.J. The microwave brightness temperature spectrum of the quiet Sun. Astrophys. J. 1991, vol. 370, p. 779. DOI:https://doi.org/10.1086/169861.

28. URL: http://ovsa.njit.edu/SynopticImg/eovsamedia/eovsa-browser (assessed February 25, 2023).

29. URL: https://github.com/kuznetsov-radio/GRFF/tree/master/ Binaries (assessed February 25, 2023).

30. URL: http://www.wdcb.ru/stp/data/solar.act/flux10.7/daily (assessed February 25, 2023).

31. URL: https://www.solarmonitor.org (assessed February 25, 2023).

32. URL: https://ckp-rf.ru/catalog/usu/73606/ (assessed February 25, 2023).

Войти или Создать
* Забыли пароль?