Москва, Россия
Москва, Россия
Мичиган, США
Кингстон, Онтарио, Канада
УДК 53 Физика
Study of physical processes in plasma near planets often requires knowledge of the position and shape of the planetary bow shock. Empirical models are usually used since theoretical MHD and kinetic models consume too much computer time and cannot be used to track fast processes. M.I. Verigin proposed a semi-empirical approach based on the use of exact theoretical expressions with a small number of parameters, which have a clear physical meaning. These parameters are estimated by fitting experimental data or detailed MHD calculations. A model of the bow shock near an arbitrary-shaped obstacle has previously been developed for a gas-dynamic flow. This model can be applied to any sonic Mach numbers and large values of the Alfven Mach number. In addition, the asymptotic Mach cone — the angle of inclination of the shock wave at an infinite distance from the planet — has been calculated analytically in the MHD approximation. In this paper, we propose a model of the bow shock for any direction of the magnetic field with respect to the upcoming flow and for any Mach numbers. Parameters of the model are the distance of the nose point from the obstacle, radius of curvature and bluntness of the bow shock at the nose point, a parameter related to the transition to the asymptotic downstream slope of the shock, and a skewing angle appearing when the interplanetary magnetic field is directed at an angle to the solar wind velocity.
solar wind, interplanetary magnetic field, planetary bow shock, Mach cone
1. Bieber J.W., Stone E.C. Energetic electron bursts in the magnetopause electron layer and in interplanetary space / Magnetospheric Boundary Layers - A Sydney Chapman Conference / ESA SP-148. 1979, p. 131.
2. Chapman J.F., Cairns I.H. Three-dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number. J. Geophys. Res. 2003. V. 108, iss. A05, 1174. DOI:https://doi.org/10.1029/2002JA009569.
3. Fairfield D.H. Average and unusual locations of the Earth's magnetopause and bow shock. J. Geophys. Res. 1971, vol. 76, no. 28, pp. 6700-6716.
4. Fairfield D.H., Cairns I.H., Desch M.D., Szabo A., Lazarus A.J., Aellig M.R. The location of low Mach number bow shocks at Earth. J. Geophys. Res. 2001, vol. 106, no. A11, pp. 25361-25376.DOI:https://doi.org/10.1029/2000JA000252.
5. Formisano V. Orientation and shape of the Earth’s bow shock in three dimensions. Planet. Space Sci. 1979, vol. 27, p. 1151.
6. Jelínek K., Němeček Z., Šafránková J. A new approach to magnetopause and bow shock modeling based on automated region identification. J. Geophys. Res. 2012. V. 117, A05208. DOI:https://doi.org/10.1029/2011JA017252.
7. Kotova G., Verigin M., Zastenker G., Nikolaeva N., Smolkin B., Slavin J., Szabo A., Merka J., Nemechek Z., Safrankova J. Bow shock observations by Prognoz-Prognoz 11 data: analysis and model comparison. Adv. Space Res. 2005, vol. 36, pp. 1958-1963. DOI:https://doi.org/10.1016/j.asr.2004.09.007.
8. Kotova G., Verigin M., Gombosi Т., Kabin K., Bezrukikh V.V. Analytical description of the near planetary bow shock based on gas-dynamic and magneto-gas-dynamic modeling for the magnetic field parallel and perpendicular to the plasma flow. Geomagnetism and Aeronomy. 2020, vol. 60, pp. 162-170. DOI:https://doi.org/10.1134/S0016793220020073.
9. Meziane K., Alrefay T.Y., Hamza A. On the shape and motion of the earth’s bow shock. Planet. Space Sci. 2014, vol. 93-94, pp. 1-9. DOI:https://doi.org/10.1016/j.pss.2014.01.006.
10. Nĕmeček Z., Šafránková J. The Earth’s bow shock and magnetopause position as a result of solar wind-magnetosphere interaction. J. Atmos. Terr. Phys. 1991, vol. 53, iss. 11-12, pp. 1049-1054. DOI:https://doi.org/10.1016/0021-9169(91)90051-8.
11. Peredo M., Slavin J.A., Mazur E., Curtis S.A. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J. Geophys. Res. 1995, vol. 100, no. A5, pp. 7907-7916. DOI:https://doi.org/10.1029/94JA02545.
12. Petrinec S.M., Russell C.T. Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles. Space Sci. Rev. 1997, vol. 79, pp. 757-791. DOI:https://doi.org/10.1023/A:1004938724300.
13. Slavin J.A., Holzer R.E. Solar wind flow about the terrestrial planets. 1. Modeling bow shock position and shape. J. Geophys. Res. 1981, vol. 86, no. A13, pp. 11401-11418.
14. Verigin M.I. Location and shape of near-planetary bow shocks: gas-dynamical and MHD aspects. Solnechno-zemnye svyazi i elektromagnitnye predvestniki zemletryasenii: sbornik dokladov III Mezhunarodnoi konferentsii [Solar-Terrestrial and Electromagnetic Precursors of Earthquakes. Proceedings of the International Conference, 16-21 August 2004, Petropavlovsk-Kamchatskii]. 2004, pp. 49-69. (In Russian).
15. Verigin M.I., Kotova G.A., Remizov A.P., Shutte N.M., Schwingenschuh K., Riedler W., Zhang T.L., Rosenbauer H., Szegö K., Tatrallyay M., Styazhkin V. Studies of the Martian bow shock response to the variation of the magnetosphere dimensions according to TAUS and MAGMA measurements aboard the Phobos 2 orbiter. Adv. Space Res. 1997, vol. 20, no. 2, pp. 155-158. DOI:https://doi.org/10.1016/S0273-1177(97)00526-7.
16. Verigin M.I., Kotova G.A., Remizov A.P., et al. Shape and location of planetary bow shocks. Cosmic Res. 1999, vol. 37, no. 1, pp. 34-39.
17. Verigin M., Kotova G., Szabo A., Slavin J., Gombosi T., Kabin K., Shugaev F., Kalinchenko A. Wind observations of the terrestrial bow shock 3-D shape and motion. Earth, Planets and Space. 2001a, vol. 53, no. 10, pp. 1001-1009. DOI:https://doi.org/10.1186/BF03351697.
18. Verigin M.I., Kotova G.A., Slavin J., Szabo A., Kessel M., Safrankova J., Nemecek Z., Gombosi T.I., Kabin K., Shugaed F., Kalinchenko A. Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations. Adv. Space Res. 2001b, vol. 28, no. 6, pp. 857-862. DOI:https://doi.org/10.1016/S0273-1177(01)00502-6.
19. Verigin M., Slavin J., Szabo A., Gombosi T., Kotova G., Plochova O., Szegö K., Tátrallyay M., Kabin K., Shugaev F. Planetary bow shocks: Gasdynamic analytic approach. J. Geophys. Res. 2003a. V. 108, iss. A08, 1323. DOI: 10.1029/ 2002JA009711.
20. Verigin M., Slavin J., Szabo A., Kotova G., Gombosi T. Planetary bow shocks: Asymptotic MHD Mach cones. Earth, Planets and Space. 2003b, vol. 55, pp. 33-38. DOI: 10.1186/ BF03352460.