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Abstract. Study of physical processes in plasma 

near planets often requires knowledge of the position 

and shape of the planetary bow shock. Empirical models 

are usually used since theoretical MHD and kinetic 

models consume too much computer time and cannot be 

used to track fast processes. M.I. Verigin proposed a 

semi-empirical approach based on the use of exact theo-

retical expressions with a small number of parameters, 

which have a clear physical meaning. These parameters 

are estimated by fitting experimental data or detailed 

MHD calculations. A model of the bow shock near an 

arbitrary-shaped obstacle has previously been developed 

for a gas-dynamic flow. This model can be applied to 

any sonic Mach numbers and large values of the Alfven 

Mach number. In addition, the asymptotic Mach cone 

— the angle of inclination of the shock wave at an infi-

nite distance from the planet — has been calculated 

analytically in the MHD approximation. In this paper, 

we propose a model of the bow shock for any direction 

of the magnetic field with respect to the upcoming flow 

and for any Mach numbers. Parameters of the model are 

the distance of the nose point from the obstacle, radius 

of curvature and bluntness of the bow shock at the nose 

point, a parameter related to the transition to the asymp-

totic downstream slope of the shock, and a skewing an-

gle appearing when the interplanetary magnetic field is 

directed at an angle to the solar wind velocity. 

Keywords: solar wind, interplanetary magnetic 

field, planetary bow shock, Mach cone. 

 

 

 

 

 

 

 

 

INTRODUCTION 

Since detailed magnetohydrodynamic (MHD) or ki-

netic calculations of the position and shape of planetary 

bow shocks (BS) are cumbersome, consume too much 

time, and therefore cannot be used to track BS motion in 

real time, empirical models are usually used in studies 

[Fairfield, 1971; Formisano, 1979; Slavin, Holzer, 1981; 

Nĕmeček, Šafránková, 1991; Peredo et al., 1995; Fair-

field et al., 2001; Chapman, Cairns, 2003; Jelínek et al., 

2012; Meziane et al., 2014]. Nonetheless, such models 

can be applied in the area of solar wind parameters used 

for their construction, and are limited in space by the 

region in which measurements are made. M.I. Verigin 

has developed a method of physical analytical model-

ing, which relies on theoretical expressions with a small 

number of free parameters [Verigin et al., 1999; Verigin 

et al., 1997, 2001a, b, 2003a, b; Verigin, 2004; Kotova 

et al., 2005]. The parameters are determined from com-

parison with experimental data or with numerical solu-

tions. The analytical models can easily be used to de-

scribe a variety of phenomena in planetary space under 

any solar wind conditions. 

An analytical model of BS for obstacles of different 

shapes in the gas-dynamic (GD) approximation is pre-

sented [Verigin et al., 2003a]. This model with an exact 

analytical solution for a BS inclination angle at an infi-

nite distance to direction of the undisturbed solar wind 

[Verigin et al., 2003b] is utilized to build a BS model in 

the MHD approximation. 

 

COORDINATE SYSTEM 

AND SKEWING ANGLE 

OF A BOW SHOCK  

Bow shocks are described using the Geocentric In-

terPlanetary Medium (GIPM) coordinate system. In this 

coordinate system, the X-axis is opposite to the direc-

tion of the undisturbed solar wind. The Y-axis is di-

rected so that the interplanetary magnetic field (IMF) 

vector lies in the second — fourth quadrants of the XY 

plane. The Z-axis completes the coordinate system to 

the right [Bieber, Stone, 1979]. To simulate a shock 

wave forming in a supersonic super-Alfvenic upcoming 

plasma flow near obstacles of different shapes, we have 

used detailed MHD calculations made at the University 

of Michigan. The calculations were performed for ob-

stacles of two types: a hemisphere with an elongated tail 

and a cylindrical paraboloid of revolution. All the calcu-

lations were carried out in units of the distance to the 

magnetopause ro. 
In the GD approximation when a gas (plasma) flows 

around an axisymmetric obstacle, which is directed 
along its axis, the BS shape is axisymmetric. The pres-
ence of IMF in the solar wind flow leads to an additional 
(compared to the aberration due to the orbital motion of 
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the planet) skewing of the BS nose point from the X-
axis in the XY plane of the GIPM coordinate system. If 
we define the nose of the MHD BS as the point at which 
the plasma behind BS flows along the normal to the 
front, the Rankine-Hugoniot conditions allow us to ob-
tain a relation for the angle of plasma skewing at the 

nose point vn [Verigin, 2004]. We will call this angle 
between the direction of the upcoming flow and the 
normal to the BS surface at the nose point a skewing 
angle of BS: 

  
bv vn

vn 2 2 2

A vn bv vn

(1 ε)sin 2( α )
tg α ,

2 ε cos α cos αM

  


  
 (1) 

where  is the value inverse to the gas density jump at the 

BS front. In the case of the magnetogasdynamics, =(γ, 

MA, MS, vn, bn), where vn and bn are the angles be-

tween the normal to BS and the plasma flow direction or 

the magnetic field respectively. A cubic equation to deter-

mine  has been derived in [Petrinec, Russell, 1997, Equa-

tion (12)]. The skewing angle depends on the angle bv 

between IMF and SW directions, Alfvén MA and sonic MS 

Mach numbers. The effect disappears for flows with mag-

netic fields parallel or perpendicular to the plasma flow. 

For typical conditions in the near-Earth solar wind, the 

skewing angle is ~5° and may reach 20°–30° at small MA. 

 

METHOD OF FITTING 

THE PLANETARY BS 

BY AN ANALYTICAL 

EXPRESSION 

When constructing an analytical model of planetary 

BS for cases where IMF is parallel or perpendicular to 

the plasma upstream, Kotova et al. [2020] have used the 

following expression to describe its shape and position: 
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where ρ=(y
2
+z

2
)

1/2
; rs is the distance to BS at a subsolar 

(nose) point; Rs is the radius of curvature; bs is the BS 

bluntness at the nose point; ωas is the asymptotic inclina-

tion of BS defining the asymptotic Mach number 

Mas=1/sin
2
 ωas. Bluntness is a dimensionless parameter 

characterizing the BS shape. The nose part of BS is 

close in shape to an blunt ellipsoid at bs<–1 and to a 

elongated ellipsoid at –1<bs<0; it is spherical at bs=–1, 

parabolic at bs=0, and hyperbolic at bs>0.  The parame-

ter ds characterizes the transition from the dominance of 

parameters of the BS subsolar region to the dominance 

of parameters of the region where the main role belongs 

to the asymptotic slope of the shock. For an arbitrary 

direction of IMF, the BS shape has a unique symmetry 

with respect to the XY plane containing vectors of IMF 

and upcoming flow velocity; and parameters of Expres-

sion (2), except for rs, depend on the clock angle φ. In 

this general case, BS should be considered in a coordi-

nate system such that Xs and Ys are turned by vn rela-

tive to XGIPM and YGIPM clockwise. In this coordinate 

system turned by the skewing angle, we can also obtain 

an exact analytical solution of MHD equations for ωas at 

an arbitrary angle bv [Verigin et al., 2003b], and we can 

still use Expression (2) for fitting BS.  

In the case when the magnetic field vector is per-

pendicular to the flow velocity vector, for the radius of 

curvature and bluntness the following expressions have 

been used [Kotova et al., 2020]: 

sy sz
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sy sz
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s sz sy
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(φ) sin φ cos φ,
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R
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b b b
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                             (3) 

where Rsy, Rsz are the radii of curvature, and bsy, bsz are 

the bluntnesses at the subsolar point of the shock sur-

face in the planes XY, i.e. when φ=0°, and XZ, i.e. 

when φ=90°, respectively. We will use these expres-

sions for an arbitrary direction of IMF too. For now, let 

us regard ds as independent of φ. 

So, fitting the BS surface by Expression (2) requires 

us to determine seven parameters: vn, rs, Rsy, Rsz, bsy, 

bsz, ds. 

Figure 1 presents an example of the fitting of BS 

calculated in the MHD approximation near a spherically 

cylindrical obstacle. Parameters of the fitting are 

vn=4.0°, rs=1.33, Rsy=1.79, Rsz=1.82, bsy=–0.33, bsz=–

0.14, ds=1.05. Obviously, there is good agreement be-

tween the analytical fitting and MHD calculations. 

 

DETERMINING PARAMETERS 

OF THE ANALYTICAL 

MHD APPROXIMATION OF BS 

FROM GD CALCULATIONS 

To find general expressions for the fitting parame-

ters, we will use a gas-dynamic analytical model of BS, 

which quite accurately describes its position near obsta-

cles of different shapes [Verigin et al., 2003a]. Formulas 

for calculating GD parameters are given in Appendix 1. 

Kotova et al. [2020] have derived formulas for recalcu-

lation of GD parameters in MHD for flows with mag-

netic fields parallel or perpendicular to the plasma flow. 

These formulas include an additional factor Г arising 

when considering the expansion of the central flow tube 

behind BS for the MHD flow as compared to the GD 

flow. For the GD flow, the relative expansion rate of the 

central flow tube is described by the following equation: 

s

1 2 1 ε 1 (ρ )
.

ε ρ

dS d V

S dx R V dx


    

 For the MHD flow, this expression can be written as 

follows: 

sy sz

sy sz

1 1 ε 1
,

ε

R RdS

S dx R R Г

 
   

where =(, , MA, MS, bv, vn);  is the polytropic 

index (see Appendix 2). When calculating the MHD 

parameters rs, Rs, bs, we use the same formulas from 

[Verigin et al., 2003a] as a basis, but with the compres-

sion ratio calculated in the MHD approximation and  
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Figure 1. Position and shape of BS (in the XGIPMYGIPM 

plane) generated in the upstream solar wind with a magnetic 

field directed at an angle of 30° to the flow velocity. The thick 

line indicates fitting by (2). The long arrow shows the direc-

tion of the normal to BS at the nose point  

with 
*
=ε/(ε–1) replaced by 

*
Г, and with MS replaced 

by Mas=(1+1/tg
2 
ω)

1/2
. 

Figure 2, a demonstrates that at any direction of the 

magnetic field the distance to the BS nose point rs norm 

can be found from the formula obtained in [Kotova et 

al., 2020]: 

GD

2/3

s norm o

s o o o bv

bv bv

( (( ε / (1 ε), γ, , ) )χ( ),

χ( ) 1 0.37sin ,

r r Г

r Г R b r

  

   
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where Ro is the radius of curvature; bo is the bluntness of 

an obstacle at a subsolar point, 
GDsr  is the distance to the 

BS nose point calculated in the GD approximation with 

ε
*
 replaced by  ε

*
 [Verigin et al., 2003a]. Similarly, the 

formulas for the radii of curvature of the BS surface 

near the nose point coincide with those obtained previ-

ously for particular cases of IMF directions: 
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where asymptotic Mach numbers in the directions y and z: 
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For conversion of the GD parameters bs and ds to the 

respective MHD parameters, only preliminary relations 

have been obtained. 

 

 

Figure 2. Comparison of parameters of bow shock model (2) fitting MHD calculations with parameters of the GD model 

(Appendix 1) 

 

Figure 3. Position and shape of BS formed near two different obstacles in the XY and XZ planes: dots mark an MHD calcula-

tion; solid lines indicate fitting (2) with parameters recalculated using GD formulas 

a b c 
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Figure 3 presents two examples of the position and 

shape of the bow shock, defined using the renormalized 

GD formulas (bs and ds were recalculated by the formu-

las for the magnetic field perpendicular to the direction 

of the plasma stream [Kotova et al., 2020]). 

 

CONCLUSIONS 

The presence of the interplanetary magnetic field in 

the solar wind flow leads to an additional inclination of 

the BS nose point from the aberrated X-axis in the 

XGIPMYGIPM plane of the GIPM coordinate system. We 

have shown that for any direction of the magnetic field 

vector relative to the plasma flow velocity vector the 

surface of the planetary bow shock can be fitted by an 

analytical function with four–seven free parameters that 

have a clear physical meaning: the distance to the nose 

point, the radii of curvature and bluntnesses at the nose 

point in the XY and XZ planes, the parameter of transi-

tion to the asymptotic downstream slope, and the skew-

ing angle. The parameters can be converted from the 

gas-dynamic approximation. 
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APPENDIX 2 

Equations for the parameter  in the MHD approximation 
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