сотрудник
Белгород, Белгородская область, Россия
сотрудник
Белгород, Белгородская область, Россия
сотрудник
Россия
УДК 66 Химическая технология. Химическая промышленность. Родственные отрасли
Армирование бетона стекловолокном позволяет улучшить эксплуатационные свойства бетона. Объектом исследования являлся стеклофибробетон, где в качестве вяжущего применялся портландцемент или глинозёмистый цемент, а в качестве наполнителя – кремнезёмное стекловолокно. Изучены химический и фазовый составы портландцемента и глинозёмистого цемента. Исследовано влияние продуктов гидратации портландцемента и глинозёмистого цемента на химическую устойчивость стекловолокна. С использованием рентгенофазового анализа исследован фазовый состав портландцемента и глинозёмистого цемента после гидратации. Выявлено, что в глинозёмистом цементе присутствуют следующие фазы: CaОAl2O3, MgОAl2O3, 12CaO·7Al2O3, 2CaO·Al2O3·SiO2, фазовый состав портландцемента – Ca6Al2(SO4)3(OH)12·12H2O, Ca2,25(Si3O7,5(OH)1,5)·(H2O), Ca(OH)2, CaCO3. Установлено, что портландцемент при гидратации отрицательно воздействует на стекловолокно из-за присутствия в нём Ca(OH)2. Фазовый состав глинозёмистого цемента после гидратации показал отсутствие Ca(OH)2. С использованием рентгенофлуоресцентного метода анализа исследован химический состав стекловолокна. Обосновано применение глинозёмистого цемента при использовании в композиционном материале нещелочестойкого стекловолокна. Проведено исследование устойчивости стекловолокна в среде цементной вытяжки. Исследования показали, что стекловолокно марки КВ-11 с продуктами гидратации глинозёмистого цемента менее взаимодействовало, чем с продуктами гидратации портландцемента.
стекловолокно, гидратация, цементная вытяжка, фибробетон, щелочеустойчивость, глинозёмистый цемент, портландцемент
Введение. В настоящее время армирование бетонов различными волокнами является наиболее перспективным и применяемым в строительной отрасли [1–3]. Обычный бетон при высыхании даёт усадку, что является причиной образования трещин и, как следствие, происходит снижение его прочностных характеристик. Улучшить свойства бетонов можно за счёт введения в его состав оптимального количества волокон различного назначения и их равномерного распределения [4–7]. Армирование стекловолокном позволяет улучшить эксплуатационные характеристики бетонов. Кроме того, благодаря применению стекловолокна как армирующего материала бетонов расширился спектр его применения [8, 9]. Иногда армирование стекловолокном является безальтернативным методом улучшения характеристик изделий [10]. Стеклофибра увеличивает прочностные характеристики при значительно меньших дозировках, чем стальная и полипропиленовая фибры, поэтому популярность её использования постоянно возрастает.
Однако на сегодняшний день недостаточно изучена стойкость волокон в цементно-щелочной среде, что является препятствием для массового внедрения стеклофибробетона. Для бетонов с матрицей на основе портландцемента можно использовать только щелочестойкое стекловолокно, а для глинозёмистых обычное алюмоборосиликатное стекловолокно, так как при твердении в нём отсутствует свободная известь, которая вызывает коррозию стекловолокна.
Материалы и методы. Для проведения экспериментальных исследований были использованы следующие сырьевые материалы: портландцемент марки ЦЕМ I 42,5Н производства ЗАО «Белгородский цемент» (ГОСТ 10178–85); глинозёмистый цемент марки ВГЦ-1-35 производства ОАО «Пашийский металлургическо-цементный завод» (ГОСТ 969–2019); песок Корочанского месторождения (ГОСТ 8736–2014); стекловолокно марки КВ-11 производства АО «НПО Стеклопластик» (ГОСТ Р 56212–2014); вода (ГОСТ 23732–2011).
Количественный химический состав стеклошариков, из которых было произведено стекловолокно, определяли с помощью спектрометра АРL 9900 «Thermo scientific» рентгенофлуоресцентным методом. Устойчивость стекловолокна к цементной вытяжке определяли по стандартной методике согласно ГОСТ 473.2–81. Для исследования была задействована лабораторная водяная баня.
Фазовый состав портландцемента и глинозёмистого цемента до и после гидратации определяли на дифрактометре марки ARL X’TRA. Для экспериментальных исследований фазового состава гидратированного цемента его затворяли водой и полученную смесь укладывали в формы. После гидратации и твердения портландцемента в течение 28 суток, а также гидратации и твердения глинозёмистого цемента в течение 3 суток образцы извлекали из форм и исследовали с помощью рентгенофазового анализа.
Основная часть. Среди композиционных материалов важное место занимают стеклоцементные композиции, обладающие высокой прочностью, трещиностойкостью, малой плотностъю, негорючестью, нетоксичностью [11]. Использование их вместо железобетона позволяет снизить: стоимость конструкций в 2–3, массу – в 8–10, расход цемента – в 2–4 раза.
Одним из направлений исследований в области стеклоцементных композиций является разработка специальных составов стекловолокон, стойких против действия среды твердеющего цемента [8]. Используемое в работе кремнезёмное волокно получают путём кислотной обработки срезов стекловолокна, изготовленных из комплексной стеклянной нити, выработанной из стекла на водоэмульсионном замасливателе. Варку стекла проводят в варочном бассейне газоэлектрической стекловаренной печи, затем идёт формование стеклошариков (рис. 1) на формующей машине АСШ, из которых вырабатывается стекловолокно марки КВ-11 [12].
С помощью рентгенофлуоресцентного анализа был определён химический состав стеклошариков, который представлен в таблице 1.
Рис. 1. Стеклошарики, из которых получают стекловолокно марки КВ-11
Таблица 1
Химический состав стеклошариков
Содержание оксидов, мас. % |
|||||
SiO2 |
Na2O |
Al2O3 |
MgO |
CaO |
Прочее |
71,81 |
21,15 |
4,05 |
0,16 |
0,10 |
2,73 |
С использованием рентгенофазового анализа исследован фазовый состав исходного портландцемента (рис. 2). Из исследований видно, что основными фазами являлся двухкальциевый и трёхкальциевый силикаты.
Рис. 2. Порошковая рентгеновская дифрактограмма портландцемента
Также исследованию подвергался гидратированный портланцемент. Выявлено, что основные гидратные фазы портландцемента – эттрингит Ca6Al2(SO4)3(OH)12·12H2O и тоберморит Ca2,25(Si3O7,5(OH)1,5)·(H2O) (рис. 3). Обнаружено значительное количество гидроксида кальция Ca(OH)2 и незначительное – вторичного карбоната кальция CaCO3.
Рис. 3. Порошковая рентгеновская дифрактограмма гидратированного портландцемента
Глинозёмистый цемент производится комплексной плавкой в доменной печи, высокие прочностные показатели которого обуславливаются наличием в нём однокальциевого алюмината. Также в нем могут присутствовать следующие фазы – это однокальциевый диалюминат CaОAl2O3 и майенит 12CaО7Al2O3. Если есть присутствие оксидов кремния и железа, то в конечном продукте возможно присутствие алюмосиликатов, ферритов и алюмоферритов Ca. Высокую прочность и огнеупорность глинозёмистому цементу придаёт CaОAl2O3. В шлаках от переработки кобальт-молибденового катализатора может присутствовать диалюминат кальция, β-Al2O3 и геленит, относящийся к инертным минералам, а также шпинели и другие минералы [13–15]. Фазовый состав глинозёмистого цемента исследовали рентгенофазовым методом (рис. 4).
Рис. 4. Порошковая рентгеновская дифрактограмма глинозёмистого цемента
Фазовый состав глинозёмистого цемента представлен моноалюминатом кальция CaОAl2O3, магнезиальной шпинелью MgОAl2O3, майенитом 12CaO·7Al2O3 и геленитом 2CaO·Al2O3·SiO2. Моноалюминат кальция является вяжущей фазой, магнезиальная шпинель и геленит – инертные примеси.
На дифрактограмме гидратированного глиноземистого цемента основная гидратная фаза представлена гидроалюминатом кальция CaОAl2O3∙10H2O (рис. 5). Это основная цементная составляющая в гидратированном глинозёмистом цементе, которая является метастабильным продуктом гидратации СА. Помимо неё могут образовываться другие метастабильные продукты гидратации – это С2АН8 и С4АН13, которые в итоге переходят в стабильный кубический С3АН6.
Рис. 5. Порошковая рентгеновская дифрактограмма гидратированного глинозёмистого цемента
Твердение портландцемента – сложный комплекс взаимосвязанных химических и физико-химических процессов, которые оказывают влияние на состояние армирующих наполнителей и композиционного материала в целом. Выбор вяжущего вещества – это главный момент при изготовлении стеклофибробетона [16–18]. Иногда целесообразно применение глинозёмистого цемента, так как он интенсивно кристаллизуется, сохраняет прочность стеклофибробетона и повышает его водонепроницаемость. Традиционно применяемый портландцемент, реагируя с водой, надежно защищает металлическую арматуру, но отрицательно воздействует на стекловолокно.
Чтобы сделать заключение о возможности использования стекловолокна данного состава в качестве армирующих элементов бетона было проведено исследование устойчивости стекловолокна в среде цементной вытяжки. Испытания проводили аналогично определению щелочестойкости по ГОСТ 473.2–81.
Была приготовлена цементная вытяжка на основе портландцемента и цементная вытяжка на основе глинозёмистого цемента. Кипячение стекловолокна на водяной бане происходило в течение 1 часа.
Устойчивость стекла к цементной вытяжке (Ц) вычисляли по формуле, %:
, (1)
где m – масса стекловолокна до испытания, г;
m1 – масса стекловолокна после испытания, г.
За окончательный результат принимали среднее арифметическое результатов двух параллельных определений, расхождение между которыми не должно превышать 0,5 % (таблица 2, 3).
Таблица 2
Результаты исследования устойчивости стекловолокна к цементной вытяжке на основе портландцемента
№ пробы |
Масса навески стекловолокна, г |
Устойчивость стекловолокна к цементной вытяжке, % |
||
m |
m1 |
Отдельной пробы |
Средняя |
|
1 |
1,007 |
0,9217 |
91,53 |
88,36 |
2 |
1,006 |
0,8533 |
85,19 |
Таблица 3
Результаты исследования устойчивости стекловолокна к цементной вытяжке на основе глиноземистого цемента
№ пробы |
Масса навески стекловолокна, г |
Устойчивость стекловолокна к цементной вытяжке, % |
||
m |
m1 |
Отдельной пробы |
Средняя |
|
1 |
1,002 |
0,9869 |
98,49 |
97,26 |
2 |
1,003 |
0,9632 |
96,03 |
Исследования показали, что стекловолокно марки КВ-11 с продуктами гидратации глинозёмистого цемента менее взаимодействовало, чем с продуктами гидратации портландцемента. В растворе портландцемента присутствует гидроксид кальция, который способствует разрушению стеклянных волокон. Поэтому, выбирая в качестве вяжущего для стеклофибробетона портландцемент, нужно использовать устойчивую к щелочам фибру.
Выводы. Исследование фазового состава глинозёмистого цемента после гидратации показало отсутствие в нём Ca(OH)2, который вызывает щелочную коррозию стекловолокна. Проведённый эксперимент показал, что портландцемент, реагируя с водой, отрицательно воздействует на кремнезёмистое стекловолокно, а именно, стойкость стекловолокон в образующей щелочной среде уменьшается.
1. Клюев С.В., Клюев А.В., Шорстова Е.С. Фибробетон для 3-d аддитивных технологий // Строительные материалы и изделия. 2019. Том 2. № 4. С. 14-20.
2. Hezhev T.A., Zhurtov A.V., Tsipinov A.S., Klyuev S.V. Fire resistant fibre reinforced vermiculite concrete with volcanic application // Magazine of Civil Engineering. 2018. No. 4. Pp. 181-194. DOI:https://doi.org/10.18720/MCE.80.16.
3. Клюев С.В., Лесовик В.С., Клюев А.В., Бондаренко Д.О. К вопросу применения нескольких видов фибр для дисперсно-армированных бетонов // Вестник БГТУ им. В.Г. Шухова. 2012. № 4. С. 81-83.
4. Володченко А.А. Влияние искусственных гидросиликатов кальция на процессы твердения и свойства неавтоклавных силикатных материалов на основе нетрадиционного алюмосиликатного сырья // Строительные материалы и изделия. 2020. Т. 3. № 2. С. 19-28. DOI:https://doi.org/10.34031/2618-7183-2020-3-2-19-28.
5. Klyuev S.V., Bratanovskiy S.N., Trukhanov S.V., Manukyan H.A. Strengthening of concrete structures with composite based on carbon fiber // Journal of Computational and Theoretical Nanoscience. 2019. Vol. 16. Issue 7. P. 2810-2814. DOI:https://doi.org/10.1166/jctn.2019.8132.
6. Klyuev S.V., Klyuev A.V., Khezhev T.A., Pukharenko Y.V. Fiber concrete for industrial and civil construction // Materials Science Forum. 2018. Vol. 945. P. 120-124. DOI:https://doi.org/10.4028/www.scientific.net/MSF.945.120.
7. Lesovik V.S., Bessonov I.V., Bulgakov B.I., Larsen O.A., Puchka O.V., Vaysera S.S. Approach on improving the performance of thermal insulating and acoustic glass composites // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. Article number 042030. DOI:https://doi.org/10.1088/1757-899X/463/4/042030.
8. Гутников С.И., Лазоряк Б.И., Селезнев А.Н. Стеклянные волокна. М.: МГУ, 2010. 53 c.
9. Ерофеев В.Т., Баженов Ю.М., Балатханова Э.М., Митина Е.А., Емельянов Д.В., Родин А.И., Карпушин С.Н. Получение и физико-механические свойства цементных композитов с применением наполнителей и воды затворения месторождений чеченской республики // Вестник МГСУ. 2014. № 12. С. 141-151.
10. Клюев С.В., Лесовик Р.В. Дисперсно-армированный мелкозернистый бетон стекловолокном // Бетон и железобетон. 2011. № 6. С. 4-6.
11. Ерофеев В.Т, Федорцов А.П., Федорцов В.А. Повышение коррозионной стойкости цементных композитов активными добавками // Строительство и реконструкция. 2020. № 2 (88). С. 51-60. DOI:https://doi.org/10.33979/2073-7416-2020-88-2-51-60.
12. Канович М.З., Трофимов Н.Н. Сопротивление композиционных материалов. М.: Мир, 2003. 504 с.
13. Рамачандран В.С. Применение дифференциального термического анализа в химии цементов. М.: Стройиздат, 1977. 408 с.
14. Бондаренко Н.И., Бессмертный В.С., Борисов И.Н., Тимошенко Т.И., Слабинская И.А., Бондаренко Д.О., Макаров А.В. Исследование кинетики дегидратации глинозёмистого цемента в условиях неизотермического нагрева // Вестник БГТУ им. В.Г. Шухова. 2016. № 5. С. 155-160.
15. Ерофеев В.Т., Федорцов А.П., Богатов А.Д., Федорцов В.А. Оценка и прогнозирование физико-химического сопротивления стеклощелочных композитов и методы его повышения // Известия вузов. Строительство. 2017. №6 (702). С. 5-14.
16. Клюев С.В. Применение композиционных вяжущих для производства фибробетонов // Технологии бетонов. 2012. № 1-2 (66-67). С. 56-57.
17. Логанина В.И., Жерновский И.В., Жегера К.В., Структурообразование цементного камня в присутствии добавки на основе аморфных алюмосиликатов // Вестник гражданских инженеров. 2016. № 3 (56). С. 142-148.
18. Amran M., Fediuk R., Vatin N., Yeong H.L., Gunasekaran M., Togay O., Klyuev S., Alabduljabber H. Fibre-reinforced foamed concretes: a review // Materials. 2020. Vol. 13. Issue. 19. Article number 4323. DOIhttps://doi.org/10.3390/ma13194323.