IONOSPHERIC DISTURBANCES OVER EASTERN SIBERIA DURING APRIL 12–15, 2016 GEOMAGNETIC STORMS
Аннотация и ключевые слова
Аннотация (русский):
We present the results of the complex study of ionospheric parameter variations during two geomagnetic storms, which occurred on April 12–15, 2016. The study is based on data from a set of radiophysical and optical instruments. Both the storms with no sudden commencement were generated by high-speed streams from a coronal hole. Despite the minor intensity of the storms (Dst ≥ –55 and –59 nT), we have revealed a distinct ionospheric response to these disturbances. A negative response of electron density and F2-layer critical frequency was observed during the main phase of both the storms. The amplitude of the negative response was higher for the second storm. The period of negative electron density deviations was accompanied by an increase in the peak height, as well as by the downward plasma drift in the evening and night hours, which is not typical of quiet conditions. We have also recorded sharp peaks in the AATR (Along Arc TEC Rate) index and in total electron content noise spikes on average 2–2.5 times. This indicates an intensification of small-scale ionospheric disturbances caused by disturbed geomagnetic conditions and high substorm activity.

Ключевые слова:
ionosphere, GNSS, incoherent scatter radar, geomagnetic storms, ionospheric disturbances
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Afraimovich E.L., Beletskii A.B., Leonovich L.A., Lesyuta O.S., Mikhalev A.V., Ashkaliev Ya.F., et al. Simultaneous radiophysical and optical measurements of the ionospheric response during the large magnetic storm of April 6, 2000. Geomagnetism and Aeronomy. 2002, vol. 42, iss. 3, pp. 366–375.

2. Afraimovich E.L., Voeykov S.V., Perevalova N.P., Ratovsky K.G. Large-scale traveling ionospheric disturbances of auroral origin according to the data of the GPS network and ionosondes. Adv. Space Res. 2008, vol. 42, iss. 7, pp. 1213–1217. DOI:https://doi.org/10.1016/j.asr.2007.11.023.

3. Afraimovich E.L., Astafyeva E.I., Demyanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather and Space Climate. 2013, vol. 3, no. A27. DOI: 10.1051/ swsc/2013049.

4. Alsatkin S.S., Medvedev A.V., Kushnarev D.S. Analyzing the characteristics of phase-shift keyed signals applied to the measurement of an electron concentration profile using the radiophysical model of the ionosphere. Geomagnetism and Aeronomy. 2009, vol. 49, iss. 7, pp. 1022–1027. DOI:https://doi.org/10.1134/S0016793209070305.

5. Altandill D., Arrazola D., Blanch E. F-region vertical drift measurements at Ebro, Spain Adv. Space Res. 2007, vol. 39, pp. 691–698. DOI:https://doi.org/10.1016/j.asr.2006.11.023.

6. Astafyeva E., Yasyukevich Y., Maksikov A., Zhivetiev I. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather. 2014, vol. 12, iss. 7, pp. 508–525. DOI:https://doi.org/10.1002/2014SW001072.

7. Astafyeva E., Zakharenkova I., Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 10, pp. 9023–9037. DOI:https://doi.org/10.1002/2015JA021629.

8. Astafyeva E., Zakharenkova I., Patrick A. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth, Planets and Space. 2016, vol. 68, no. 152. DOI:https://doi.org/10.1186/s40623-016-0526-x.

9. Astafyeva E., Zakharenkova I., Huba J.D., Doornbos E., van den IJssel J. Global ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res.: Space Phys. 2017, vol. 122, iss. 11, pp. 11716–11742. DOI:https://doi.org/10.1002/2017JA024174.

10. Balan N., Yamamoto M., Liu J.Y., Liu H., Lühr H. New aspects of thermospheric and ionospheric storms revealed by CHAMP. J. Geophys. Res. 2011, vol. 116, no. A07305. DOI:https://doi.org/10.1029/2010JA016399.

11. Blagoveshchenskii D.V. Effect of magnetic storms (substorms) on HF propagation: A review. Geomagnetism and Aeronomy. 2013, vol. 53, iss. 4, pp. 409–423. DOI: 10.1134/ S0016793213040038.

12. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the Ionosphere]. Moscow, Nauka Publ., 1988. 528 p. (In Russian).

13. Buonsanto M.J. Ionospheric storms – A review. Space Science Rev. 1999, vol. 88, iss. 3, pp. 563–601, DOI: 10.1023/ A:1005107532631.

14. Burlaga I.P., Lepping B.P. The causes of recurrent geomagnetic storms. Planetary and Space Sci. 1977, vol. 25, iss. 12, pp. 1151–1160. DOI:https://doi.org/10.1016/0032-0633(77)90090-3.

15. Crowley G., Hackert C.L., Meier R.R., Strickland D.J., Paxton L.J., Pi X., Mannucci A., et al. Global thermosphere-ionosphere response to onset of 20 November 2003 storm. J. Geophys. Res. 2006, vol. 111, no. A10S18. DOI: 10.1029/ 2005JA011518.

16. Danilov A.D. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, vol. 52, iss. 3, pp. 343–366. DOI:https://doi.org/10.1016/j.asr.2013.04.019.

17. Demyanov V.V., Yasukevich Yu.V. Mekhanizmy vozdei-stviya neregulyarnykh geofizicheskikh faktorov na funktsioni-rovanie sputnikovykh radionavigatsionnykh system [Mechanisms of Impact of Irregular Geophysical Factors on Operation of Radio Positioning Satellite Systems]. Irkutsk, Izdatelstvo IGU, 2014. 349 p. (In Russian).

18. Demyanov V.V., Yasyukevich Yu.V., Jin S., Sergeeva M.A. The second-order derivative of GPS carrier phase as a promising means for ionospheric scintillation research. Pure and Applied Geophys. July 2019, pp. 1–19. DOI: 10.1007/ s00024-019-02281-6.

19. Dow J.M., Neilan R.E., Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy. 2009, vol. 83, iss. 3–4, pp. 191–198. DOI:https://doi.org/10.1007/s00190-008-0300-3.

20. Fuller-Rowell T.J., Codrescu M.V., Rishbeth H., Moffett R.J., Quegan S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1996, vol. 101, iss. A2, pp. 2343–2353. DOI:https://doi.org/10.1029/95JA01614.

21. Juan J.M., Sanz J., Rovira-Garcia A., González-Casado G., Ibáñez D., Perez R.O. AATR an ionospheric activity indicator specifically based on GNSS measurements. J. Space Weather and Space Climate. 2018, vol. 8, no. A14. DOI: 10.1051/ swsc/2017044.

22. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., Ratovsky K.G., Korenkova N.A., Yasyukevich Yu.V., Mylnikova A.A., Cherniak Yu.V. Similarity and differences in morphology and mechanisms of the foF2 and TEC disturbances during the geomagnetic storms on 26–30 September 2011. Ann. Geophysicae. 2017, vol. 35, iss. 4, pp. 923–938. DOI:https://doi.org/10.5194/angeo-35-923-2017.

23. Klimenko M.V., Klimenko V.V., Despirak I.V., Zakharenkova I.E., Kozelov B.V., Cherniakov S.M., et al. Disturbances of the thermosphere—ionosphere—plasmasphere system and auroral electrojet at 30° E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015. J. Atm. Solar-Terr. Phys. 2018, vol. 180, pp. 78–92. DOI: 10.1016/ j.jastp.2017.12.017.

24. Kotova D.S., Klimenko M.V., Klimenko V.V., Zakharov V.E. Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. II. Radiowave propagation. Geomagnetism and Aeronomy. 2017, vol. 57, iss. 3, pp. 288–300. DOI:https://doi.org/10.1134/S0016793217030100.

25. Kurkin V.I., Polekh N.M., Pirog O.M., Chistyakova L.V., Zherebtsov G.A. The solar wind magnetic cloud of October, 18–20, 1995 effect on ionosphere of the Russian Asian region. Adv. Space Res. 2001, vol. 27, iss. 8, pp. 1381–1384. DOI:https://doi.org/10.1016/S0273-1177(01)00041-2.

26. Kurkin V.I., Pirog O.M., Polekh N.M. Cyclic and seasonal variations in the ionospheric effects of geomagnetic storms. Geomagnetism and Aeronomy. 2004, vol. 44, iss. 5, pp. 583–591.

27. Kurkin V.I., Polekh N.M., Zolotukhina N.A. The pattern of ionospheric disturbances caused by complex interplanetary structure on 19–22 December 2015. J. Atm. Solar-Terr. Phys. 2018, vol. 179, pp. 472–483. DOI:https://doi.org/10.1016/j.jastp.2018.07.003.

28. Leonovich L.A., Mikhalev A.V., Leonovich V.A. Manifestation of geomagnetic disturbances in mid-latitude upper atmosphere glow. Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2012, iss. 20, pp. 109–115. (In Russian).

29. Leonovich L.A., Mikhalev A.V., Tashchilin A.V., Rahmatulin R.A., Leonovich V.A., Pashinin A.Yu. The response of mid-latitude upper atmospheric parameters to January 21, 2005 geomagnetic storm as deduced from optical, magnetic and radiophysical measurements. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2013, vol. 26, iss. 1, pp. 75–80. (In Russian).

30. Lоewe C.A., Prölss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, iss. A7, pp. 14209–14213. DOI:https://doi.org/10.1029/96JA04020.

31. Mendillo M. Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, RG4001. DOI:https://doi.org/10.1029/2005RG000193.

32. Mikhalev A.V. Midlatitude airglows in East Siberia in 1991–2012. Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2013, iss. 24, pp. 78–83. (In Russian).

33. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophysical Res. Lett. 1997, vol. 24, iss. 18, pp. 2283–2286. DOI:https://doi.org/10.1029/97GL02273.

34. Piggott W.R., Rawer K. U.R.S.I. Handbook of Ionogram Interpretation and Reduction. 2nd ed. Report UAG-23, WDC-A for STP, NOAA, Boulder, Colorado, 1972. 135 p.

35. Polekh N., Zolotukhina N., Kurkin V., Zherebtsov G., Shi J., Wang G., Wang Z. Dynamics of ionospheric disturbances during the 17–19 March 2015 geomagnetic storm over East Asia. Adv. Space Res. 2017, vol. 60, iss. 11, pp. 2464–2476. DOI:https://doi.org/10.1016/j.asr.2017.09.030.

36. Potekhin A.P., Medvedev A.V., Zavorin A.V., Kushnarev D.S., Lebedev V.P., Lepetaev V.V., Shpynev B.G. Recording and control digital systems of the Irkutsk Incoherent Scattering Radar. Geomagnetism and Aeronomy. 2009, vol. 49, iss. 7, pp. 1011–1021. DOI:https://doi.org/10.1134/S0016793209070299.

37. Ratovsky K.G., Klimenko M.V., Klimenko V.V., Chirik N.V., Korenkova N.A., Kotova D.S. After-effects of geomagnetic storms: statistical analysis and theoretical explanation. Solar-Terr. Phys. 2018, vol. 4, iss. 4, pp. 26–32. DOI: 10.12737/ stp-44201804.

38. Reinisch B.W., Haines D.M., Bibl K., Galkin I.A., Huang X., Kitrosser D.F., Sales G.S., Scali J.L. Ionospheric sounding in support of over-the-horizon radar. Radio Sci. 1997, vol. 32, iss. 4, pp. 1681–1694. DOI:https://doi.org/10.1029/97RS00841.

39. Rodger A.S., Wrenn G.L., Rishbeth H. Geomagnetic storms in the Antarctic F-region. II. Physical interpretation. J. Atm. Terr. Phys. 1989, vol. 51, iss. 11–12, pp. 851–866. DOI:https://doi.org/10.1016/0021-9169(89)90002-0.

40. Romanova E.B., Zherebtsov G.A., Ratovsky K.G., Polekh N.M., Shi J., Wang X., Wang G. Comparing the ionosphere F2-layer response to geomagnetic storms at mid and low latitudes. Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2013, iss. 22, pp. 27–30. (In Russian).

41. Sanz J., Juan J.M., Hernández-Pajares M. GNSS data processing. Vol. 1: Fundamentals and Algorithms. Noordwijk, ESA communications, 2013. 223 p.

42. Shcherbakov A.A., Medvedev A.V., Kushnarev D.S., Tolstikov M.V., Alsatkin S.S. Calculation of meridional neutral winds in the middle latitudes from the Irkutsk Incoherent Scatter Radar. J. Geophys. Res. Space Phys. 2015, vol. 120, iss. 12, pp. 10851–10863. DOI:https://doi.org/10.1002/2015JA021678.

43. Tashchilin A.V., Leonovich L.A. Modeling nightglow in atomic oxygen red and green lines under moderate disturbed geomagnetic conditions at midlatitudes. Solar-Terr. Phys. 2016, vol. 2, iss. 4, pp. 94–106. DOI:https://doi.org/10.12737/24276.

44. Tashlykov V.P., Medvedev A.V., Vasilyev R.V. Backscatter signal model for Irkutsk Incoherent Scatter Radar. Solar-Terr. Phys. 2018, vol. 4, iss. 2, pp. 24–32. DOI:https://doi.org/10.12737/stp-42201805.

45. Wrenn G.L., Rodger A.S., Rishbeth H. Geomagnetic storms in the Antarctic F-region. 1. Diurnal and seasonal patterns for main phase effects. J. Atm. Terr. Phys. 1987, vol. 49, iss. 9, pp. 901–913. DOI:https://doi.org/10.1016/0021-9169(87)90004-3.

46. Yasyukevich Yu.V., Zhivetiev I.V., Kiselev A.V., Edemskiy I.K., Syrovatsky S.V., Shabalin A.S., Vesnin A.M. Tool for creating maps of GNSS total electron content variations. Proc. 2018 Symposium “Progress In Electromagnetics Research”. Toyama, Japan, 1–4 August 2018, pp. 2417–2421. DOI:https://doi.org/10.23919/PIERS.2018.8597604.

47. Yermolaev Yu.I., Yermolaev M.Yu. Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events. Adv. Space Res. 2006, vol. 37, iss. 6, pp. 1175–1181. DOI:https://doi.org/10.1016/j.asr.2005.03.130.

48. Zherebtsov G.A., Zavorin A.V., Medvedev A.V., Nosov V.E., Potekhin A.P., Shpynev B.G. The Irkutsk Incoherent Scattering Radar. J. Communications Technology and Electronics. 2002, vol. 47, iss. 11, pp. 1222–1228.

49. Zolotukhina N.A., Kurkin V.I., Polekh N.M. Ionospheric disturbances over East Asia during intense December magnetic storms of 2006 and 2015: similarities and differences. Solar-Terr. Phys. 2018, vol. 4, iss. 3, pp. 28–42. DOI:https://doi.org/10.12737/stp-43201805.

50. URL: http://wdc.kugi.kyoto-u.ac.jp/qddays/index.html (accessed January 20, 2020).

51. URL: http://wdc.kugi.kyoto-u.ac.jp (accessed January 20, 2020).

52. URL: http://ckp-rf.ru/usu/77733/ (accessed January 20, 2020).

53. URL: http://ckp-angara.iszf.irk.ru (accessed January 20, 2020).

54. URL: http://simurg.iszf.irk.ru (accessed January 20, 2020).

Войти или Создать
* Забыли пароль?