Аннотация и ключевые слова
Аннотация (русский):
Приведены результаты теоретических исследований звукопоглощающих строительных материалов и конструкций, дана их классификация по форме, по структурным признакам, по величине коэффициента звукопоглощения в определенном диапазоне частот, что позволило среди многообразия применяющихся сейчас конструкций звукопоглощающих облицовок выделить три основных группы, охватывающих все виды выпускаемых в нашей стране изделий и отличающихся специфическими признаками как конструктивного, так и акустического характера.

Ключевые слова:
акустика, звукопоглощение, коэффициент звукопоглощения, ограждающая конструкция, классификация, облицовка
Текст
Текст (PDF): Читать Скачать

 

Введение. Звукопоглощающие материалы классифицируются по следующим основным признакам: эффективности, форме жёсткости (величине относительного сжатия), структуре и возгораемости [1, 2].

По форме звукопоглощающие материалы и изделия подразделяют на штучные (блоки, плиты); рулонные (маты, полосовые прокладки, холсты); рыхлые и сыпучие (вата минеральная и стеклянная, керамзит, вспученный перлит и другие пористые зернистые материалы) [3].

По структурным признакам звукопоглощающие материалы и изделия подразделяют на пористо-волокнистые, пористо-ячеистые (из ячеистого бетона и перлита) и пористо-губчатые (пенопласты, резины) [4].

Основная часть. При падении звуковой волны на ограждающую поверхность часть звуковой энергии отражается и часть поглощается материалом. Коэффициент звукопоглощения представляет собой отношение, характеризующее количество поглощенной энергии  к падающей [5]:

    (1)

где  – энергия отраженной звуковой волны.

Звукопоглощающие материалы предназначены для гашения воздушных шумов и регулирования акустических характеристик помещений, поэтому они должны обладать хорошим звукопоглощением, которое характеризуется среднеарифметическим реверберационным коэффициентом звукопоглощения .

На величину  оказывают влияние уровень и характеристика звука (шума), свойства звукопоглощающего материала и в первую очередь характер и объем пористости этого материала, конструктивные особенности устройства звукопоглощающей облицовки ограждения [6].

Решающее влияние на звукопоглощение оказывает частота звуковой волны, т. е. один и тот же материал может хорошо поглощать высокочастотный звук и плохо низкочастотный. Поэтому  определяют для каждого материала при нескольких значениях частот [7]. Весьма существенное влияние на  оказывают общий объём и характер пористости.

 Наилучшие условия для поглощения звука создаются в материалах с сообщающейся пористостью. Для уменьшения количества отраженной энергии пористость звукопоглощающего материала должна быть открытой. С возрастанием частоты звука одного и того же материала возрастает. При этом в диапазоне высоких частот его значения несколько снижаются. Наименьшим значением  звукопоглощающие материалы характеризуются в диапазоне низких частот (ниже 250 Гц). Низкочастотные волны в материал почти не проникают [8].

Выявлено, что высокочастотные волны лучше проникают в поры малых размеров без значительного отражения.

В табл.1 приведены значения коэффициента звукопоглощения наиболее распространенных акустических материалов [9].

Материалы, значения  которых более 0,4 при частоте 1000 Гц, относят обычно к эффективным.

Выше было отмечено, что высокочастотные волны хорошо поглощаются порами малых размеров. Макропоры фибролита нельзя отнести к таковым. Однако малые поры в большом количестве имеются в древесной шерсти, из которой фибролит изготовляют. Этим и можно объяснить достаточно высокие значения  при высоких частотах. Отсюда следует, что для эффективного гашения высокочастотного звука надо не только создавать мелкопористую структуру в акустическом материале, но и применять для его изготовления сырьевые материалы, характеризующиеся большим объемом естественных пор малых размеров [10].

 

Таблица 1

Значения некоторых акустических материалов

Материал

Значения  на частотах, Гц

125

500

1000

2000

4000

Плиты минераловатные

0,05

0,66

0,91

0,96

0,89

Плиты ячеистобетонные

0,08

0,36

0,62

0,77

0,76

Акустический фирболит

0,06

0,25

0,38

0,58

0,63

 

 

При проектировании и строительстве ограждающих конструкций необходимо учитывать звукопоглощающие свойства различных материалов и правильно их использовать [11].

Практически любая поверхность в той или иной степени поглощает звуковую энергию. Поглощение звуковой энергии различными материалами и конструкциями происходит за счет реактивных потерь при колебаниях конструкции.

Обычные строительные материалы – стекло, бетон, штукатурка и т.п. в общем случае имеют ничтожно малые коэффициенты звукопоглощения (чаще всего в диапазоне 0,01 – 0,05), т.е. практически полностью отражают падающие звуковые волны. Поэтому для устранения отраженной части звукового поля требуется применение специальных материалов или конструкций, обладающих значительно более высокими коэффициентами звукопоглощения и получивших название звукопоглощающих. Основное назначение таких конструкций заключается в снижении энергии отраженных волн при их падении на поверхность [12].

В настоящее время стандартизирована классификация звукопоглощающих материалов и изделий по величине коэффициента звукопоглощения a в определенном диапазоне частот. Материалы и изделия с a>0,8 в диапазоне низких (63, 125, 250 Гц), средних (500, 1000 Гц) и высоких (2000, 4000 и 8000 Гц) частот отнесены к первому классу звукопоглотителей, обеспечивающих максимальное снижение уровня звукового давления. Для второго класса в тех же диапазонах частот величина a лежит в пределах   0,4 – 0,8, а для третьего – 0,2-0,4 [13].

Использование этого основного акустического признака позволило среди многообразия применяющихся сейчас конструкций звукопоглощающих облицовок выделить три основные группы, охватывающие все виды выпускаемых в нашей стране изделий и отличающихся специфическими признаками как конструктивного, так и акустического характера.

К первой группе звукопоглощающих элементов, получивших наибольшее распространение и названных плоскими, относятся элементы, изготовленные из материалов полной заводской готовности (плиты типа «Акмигран», ПА/С, ПА/О и др.), а также выполненные в виде съемных кассет из перфорированных (металлических, асбестоцементных, гипсовых) покрытий со звукопоглощающими слоями из ультратонкого стекло- и базальтового волокна или минераловатных плит различных модификаций. Конструктивные элементы этой группы характеризуются коэффициентами звукопоглощения, как правило, не превышающими 0,8–0,9, и с учетом ограниченности занимаемой ими в помещении площади обеспечиваемый такой облицовкой средний коэффициент звукопоглощения в большинстве случаев не превышает 0,5.

Вторую группу звукопоглощающих элементов составляют так называемые объемные звукопоглощающие элементы, отличающиеся повышенным (по сравнению с плоскими элементами) на 50 – 70 % коэффициентом звукопоглощения за счет дополнительного поглощения вследствие явлений дифракции звуковых волн и более развитой поверхности поглощения. Конструкция объемных элементов относительно проста. Каждый элемент состоит их металлического каркаса, обтянутого дюралюминиевой просечно-вытяжной сеткой и заполненного ультратонким стекловолокном в оболочке из стеклоткани. Два таких элемента длиной 3 м, шириной 0,3 м и высотой сечения 0,25 – 0,35 м составляют панель потолка общей площадью около 1,5 м. Относительно небольшая масса панели (до 15 кг) позволяет легко осуществлять ее монтаж даже в условиях действующего цеха.

Третья группа звукопоглощающих элементов, являющаяся по существу одной из новых форм объемного элемента, два размера которого значительно превосходят третий, была выделена в самостоятельную из-за исключительной простоты изготовления и монтажа, экономичности, удовлетворительного внешнего вида и высоких огнестойких качеств и получила название элементов кулисного типа [14].

Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.). Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75 % по объёму).

Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые) [15].

Выбор материала зависит от акустического режима, назначения и архитектурных особенностей помещения.

Наиболее часто для производственных помещений применяются звукопоглощающие облицовки, состоящие из пористых волокнистых звукопоглощающих материалов, закрытых со стороны помещения перфорированными экранами, которые защищают звукопоглощающий материал от механических повреждений и обеспечивают удовлетворительный декоративный вид. Толщина звукопоглощающего материала принимается равной 50 - 100 мм. Чтобы предотвратить высыпание волокнистых материалов через отверстия перфорации, между листом экрана и волокнистым материалом помещается слой тонкой акустически прозрачной ткани.

Кроме того, можно привести следующие виды звукопоглотителей [16]:

1. Пористо-колебательные системы, в которых наблюдается не только поглощение звуковой энергии за счет пористости материала, но и активное сопротивление системы, совершающей вынужденные колебания под действием падающей звуковой волны (портьеры, завесы).

2. Колебательные системы, в которых звуковая энергия поглощается при   вынужденных колебаниях конструкции под действием подающей звуковой волны (фанерные щиты, щиты из пластмассы, сухая штукатурка).

3. Резонансные системы, в которых звуковая энергия поглощается при резонансных колебаниях объема воздуха .

4. Резонансно-колебательные системы, представляющие собой совокупность колебательных систем с воздушными резонаторами, в которых звуковая энергия поглощается за счет резонансных колебаний воздушных объемов и колебаний перфорированных мембран под воздействием падающей звуковой волны.

Звукопоглощающие свойства наиболее ярко выражены в окружающих конструкциях, имеющих пористую структуру, однако недостатком таких конструкций являются плохие санитарно - гигиенические свойства (накапливание пыли, сложность ее удаления).

Вывод: таким образом, звукопоглощающие и звукоизоляционные материалы должны обладать повышенной способностью поглощать и рассеивать звуковые волны.

Кроме того, звукопоглощающие и звукоизоляционные материалы и изделия должны обладать стабильными физико-механическими и акустическими свойствами в течение всего периода эксплуатации; быть био- и влагостойкими; не выделять в окружающую среду вредных веществ.

Звукопоглощающие изделия, как правило, должны обладать высокими декоративными свойствами, так как их одновременно используют и для отделки внутренних поверхностей ограждений зданий.

*Работа выполнена в рамках Программы стратегического развития БГТУ им. В.Г. Шухова на 2012–2016 годы.

 

Список литературы

1. Борисов Л.М., Веселовский М.Б. Эффективность звукоизолирующих ограждений на низких частотах Борьба с шумом и звуковой вибрацией. М.: Знание, МДТНП, 1984. С.112-117.

2. Горяйнов К.Э., Коровникова В.В. Технология производства полимерных и теплоизоляционных изделий Учебник для вузов. М.: Высшая школа, 1975. 217с.

3. Звукопоглощающие материалы и конструкции: Справочник. М.: Связь, 1970. 124 с.

4. Китайцев В.А. Технология теплоизоляционных материалов М.: Стройиздат, 1964. 382 с.

5. Исакович М.А. Общая акустика М.: Наука, 1973. 496 с.

6. Погодин А.С. Шумоглушащие устройства М.: Машиностроение, 1973. 179 с.

7. Юдин Е.Я., Борисов Л.А., Поренштейн И.В. Борьба с шумом на производстве: Справ. М.: Машиностроение, 1985. 393 с.

8. Радоуцкий В.Ю. Сравнительный анализ оптимальных параметров акустических материалов различного состава // Материалы международной научной конференции «Образование, наука, производство и управление в ХХI веке». Старый Оскол.: 2004.

9. Строительные нормы и правила Российской Федерации. Защита от шума (СНиП 23-03-2003). М.: Стройиздат, 2003. 39 с.

10. Скучик Е. Основы акустики М.: Мир, 1976. Т2. 544 с.

11. Руководство по измерению и расчету акустических характеристик звукопоглощающих материалов. М.: Стройиздат, 1979. 22 с.

12. Борисов Л.А., Осипов Г.Л., Юдин Е.Я., Хюбкер Г.и др. Снижение шума в помещениях средствами звукопоглощения // Снижение шума в зданиях и жилых районах М.: Стройиздат, 1987. С. 403-425.

13. Штанов Е.Н. Строительные материалы: Справочник. Нижний Новгород: Изд-во «Вента-2», 1995. С.176-179.

14. Борисов Л.А., Сергеев М.В., Чудинов Ю.М. Метод расчета звукопоглощающих систем кулисного типа // Труды НИИСФ. Исследования по строительной акустике. М.: ЦИНИС, 1981. С.15-21.

15. Сапожков М.А. Акустика. Справочник. М.: Радио и связь, 1989. 157 с.

16. Борисов Л.А., Велижанина К.А. Объемные поглотители звука // Доклады IV Всесоюзной акустической конференции. М.: АН СССР, 1968. С.4-13.


Войти или Создать
* Забыли пароль?