IONOSPHERIC DISTURBANCES OVER EAST ASIA DURING INTENSE DECEMBER MAGNETIC STORMS OF 2006 AND 2015: SIMILARITIES AND DIFFERENCES
Аннотация и ключевые слова
Аннотация (русский):
Using data from ionosondes, located in East Asia, and total electron content maps, we have made a comparative analysis of ionospheric disturbances associated with the intense geomagnetic storms of December 14–16, 2006 and December 19–22, 2015. These storms had almost equal peak intensities (Dstmin=–162 and –155 nT), but different durations of the main phases (2.5 and 19 hr). At the beginning of both the storms, the region under study was located in the vicinity of the midnight meridian. Ionospheric responses to magnetic storms differed in: i) an increase in the F2-layer critical frequency at subauroral latitudes, caused by an increase in auroral precipitation, during the initial phase of the former storm and the absence of this effect in the latter; (ii) a sharp drop in the critical frequency in the evening hours of the main phase of the latter storm, caused by a shift of the main ionospheric trough to lower latitudes, and the absence of this effect during the former storm; (iii) generation of a short-term positive disturbance observed at subauroral latitudes only in the early recovery phase of the former storm after the negative ionospheric disturbance. During both the storms at middle latitudes there were positive disturbances and wave-like fluctuations of the critical frequency which increased in the vicinity of the dawn meridian. The main causes of the differences between the ionospheric storms are shown to be the differences between the initial conditions of the magnetosphere–ionosphere system and durations of the main phases of magnetic storms.

Ключевые слова:
severe magnetic storms, interplanetary drivers, winter ionospheric storm effects
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Akasofu S.I. Energy coupling between the solar wind and the magnetosphere // Space Sci. Rev. 1981. V. 28. P. 121-190.

2. Bargatze L.F., Baker D.N., McPherron R.L., Hones E.V. Magnetospheric impulse response for many levels of geomagnetic activity. J. Geophys. Res. 1985, vol. 90, pp. 6387-6394. DOI:https://doi.org/10.1029/JA090iA07p06387.

3. Baumjohann W., Kamide Y. Hemispherical Joule heating and the AE indices. J. Geophys. Res. 1984, vol. 89, pp. 383-388.

4. Borovsky J.E., Denton M.H. Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU. J. Geophys. Res. 2010, vol. 115, A10101. DOI:https://doi.org/10.1029/2009JA014966.

5. Borries C., Mahrous A.M., EllahounyN.M., Badeke R. Multiple ionospheric perturbations during the Saint Patrick’s Day storm 2015 in the European-African sector. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 11333-11345. DOI: 10.1002/ 2016JA023178.

6. Bryunelli B.E., Namgaladze A.A. Fizikaionosfery [Physics of the Ionosphere]. Moscow, Nauka Publ., 1988. 528 p. (In Russian).

7. Buonsanto M.J. Ionospheric storms - a review. Space Sci. Rev. 1999, vol. 88, pp. 563-601. DOI:https://doi.org/10.1023/A:1005 107532631.

8. Chen Z., Wang J.-S., Huang C.-M., Huang L.-F. A new pair of indices to describe the relationship between ionospheric disturbances and geomagnetic activity. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 10156-10163. DOI: 10.1002/ 2014JA020438.

9. Chun F.K., Knipp D.J., McHard M.G., Lacey J.R. Joule heating patterns as a function of polar cap index. J. Geophys. Res. 2002, vol. 107, no. A7, p. 1119. DOI:https://doi.org/10.1029/2001JA 000246.

10. Clauer C.R., Cai X., Welling D., DeJong A., Henderson M.G. Characterizing the 18 April 2002 storm-time sawtooth events using ground magnetic data. J. Geophys. Res. 2006, vol. 111, A04S90. DOI:https://doi.org/10.1029/2005JA011099.

11. Dmitriev A.V.,Suvorova A.V., Klimenko M.V.,Klimenko V.V.,Ratovsky K.G.,Rakhmatulin R.A., Parkhomov V.A. Predictable and unpredictable ionospheric disturbances during St. Patrick’s Day magnetic storms of 2013 and 2015 and on 8-9 March 2008. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 2398-2423. DOI:https://doi.org/10.1002/2016JA023260.

12. Driatsky V.M. Priroda anomal’nogo pogloshcheniya kosmicheskogo radioizlucheniya v nizhnei ionosphere vysokik shirot [The Origin of Anomalous Absorption of Cosmic Radio Emission in the Lower Ionosphere at High-Latitudes]. Leningrad, Gidrometeoizdat, 1974. 224 p. (In Russian).

13. Ericsson S., Ergun R.E., Carlson C.W., Peria W. The cross-polar potential drop and its correlation to the solar wind. J. Geophys. Res. 2000, vol. 105, pp. 18639-18654.

14. Fuller-Rowell T.J., Codrescu M.V., Roble R.G., Richmond A.D. How does the thermosphere and ionosphere react to a geomagnetic storm? Magnetic Storms. Washington, 1997, pp. 203-226. (AGU Monograph. vol. 98). DOI:https://doi.org/10.1029/GM098.

15. Gonzalez W.D., Tsurutani B.T., Lepping R.P., Schwenn R. Interplanetary phenomena associated with very intense geomagnetic storms. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, pp. 173-181.

16. Gonzalez W.D., Echer E., Tsurutani B.T., Clúa de Gonzalez A.L., Dal Lago A. Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 2011, vol. 158, pp. 69-89. DOI:https://doi.org/10.1007/s11214-010-9715-2.

17. Goodman J.M. Space Weather & Telecommunications. New York, Springer, 2005, 382 р.

18. Huang C.M. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. 2013, vol. 118, pp. 5149-5156. DOI:https://doi.org/10.1029/2012 JA018118.

19. Kalita B.R., Hazarika R., Kakoti G., Bhuyan P.K., Chakrabarty D., Seemala G.K., Wang K., Sharma S., Yokoyama T., Supnithi P., Komolmis T., YatiniC.Y., Le Huy M., Roy P. Conjugate hemisphere ionospheric response to the St. Patrick’s Day storms of 2013 and 2015 in the 100° E longitude sector. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 11364-11390. DOI: 10.1002/ 2016JA023119.

20. Kamide Y., Winningham J.D. A statistical study of the “instantaneous” night side auroral oval: the equatorial boundary of electron precipitation as observed by the Isis-1 and 2 satellites. J. Geophys. Res. 1977, vol. 82, pp. 5573-5585. DOI:https://doi.org/10.1029/JA082i035p05573.

21. Kamide Y., Maltsev Y.P. Geomagnetic storms. Handbook of the Solar-Terrestrial Environment.Berlin, Heidelberg, Springer-Verlag, 2007, pp. 355-374. DOI:https://doi.org/10.1007/11367758_14.

22. King J.H. Solar wind parameters and magnetospheric coupling studies. Solar Wind - Magnetospheric Coupling. Tokyo, Terra Scientific Publishing Company, 1986, pp. 163-177.

23. Lee D.-Y., Lyons L.R., Yumoto K. Sawtooth oscillations directly driven by solar wind dynamic pressure enhancements. J. Geophys. Res. 2004, vol. 109, A04202. DOI:https://doi.org/10.1029/2003 JA010246.

24. Lei J., Burns A.G., Tsugawa T., Wang W., Solomon S.C., Wiltberger M. Observations and simulations of quasiperiodic ionospheric oscillations and large-scale traveling ionospheric disturbances during the December 2006 geomagnetic storm. J. Geophys. Res. 2008, vol. 113, A06310. DOI:https://doi.org/10.1029/2008 JA013090.

25. Levitin A.E., Gromova L.I., Gromov S.V., Dremukhina L.A. Kp-index and local high-latitudinal geomagnetic activity. Proc. the 9th International Conference “Problems of Geocosmos”. Saint-Petersburg, 2012, pp. 295-300.

26. Liu J., Wang W., Burns A., Yue X., Zhang S., Zhang Y., Huang C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. 2016, vol. 121, pp. 727-744. DOI:https://doi.org/10.1002/2015JA021832.

27. Marmet P. New digital filter for the analysis of ex-perimental data. Rev. Sci. Instrum. 1979, no. 50, pp. 79-83.

28. Mendillo M. Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, RG4001. DOI:https://doi.org/10.1029/2005RG000193.

29. Pirog O.M., Polekh N.M., Zherebtsov G.A., Smirnov V.F., Shi J., Wang X. Seasonal variations of the ionospheric effects of geomagnetic storms at different latitudes of East Asia. Adv. Space Res. 2006, vol. 37, pp. 1075-1080.

30. Prölss G.W., Brace L.H., Mayr H.G., Carignan G.R., Killeen T.L., Klobuchar J.A. Ionospheric storm ef-fects at subauroral latitudes: a case study. J. Geophys. Res. 1991, vol. 96, no. A2, pp. 1275-1288.

31. Prölss G.W. Ionospheric F-region Storms: Unsolved Problems. Characterising the Ionosphere: Meeting Proceedings RTO-MP-IST-056, Paper 10. Neuilly-sur-Seine, France: RTO, 2006, pp. 10-1-10-20. Available from:

32. http://www.rto.nato.int/abstracts.asp (accessed April 25, 2018).

33. Rodger A.S., Wrenn G.L., Rishbeth H. Geomagnetic storms in the Antarctic F-region. II. Physical inter-pretation. J. Atmos. Terr. Phys. 1989, vol. 51, pp. 851-866.

34. Romanova E.B., Tashchilin A.V. Modeling of struc-tural features of electron density distribution in plasmasphere. Solnechno-zemnayafizika [Solar-Terr. Phys.]. 2013, vol. 22, pp. 21-23. (In Russian).

35. Sharma A.S., Baker D.N., Borovsky J.E. Nonequilibrium phenomena in the magnetosphere: phase transition, selforganized criticality and turbulence. Nonequilibrium Phenomena in Plasmas. Springer, 2005, pp. 3-22.

36. Tashchilin A.V., Romanova E.B. Modeling of plas-masphere properties under quiet and disturbed con-ditions. Geomagnetizmiaeronomiya [Geomagnetism and Aeronomy]. 2014, vol. 54, no. 1, pp. 13-22. (In Russian). DOI: 10.7868/ S0016794014010167.

37. Tereshchenko V.D., Vasiljev E.B., Ogloblina O.F., Tereshchenko V.A., Chernyakov S.M. The response of the polar lower ionosphere to powerful solar flares on December, 5-14, 2006. Physics of Auroral Phenomena: Proc. XXX Annual Seminar. Apatity, 2007, pp. 196-198.

38. Troshichev O.A., Kotikov A.L., Bolotinskaya B.D., Andrezen V.G. Influence of the IMF azimuthal component on magnetospheric substorm dynamics. J. Geomag. Geoelectr. 1986, vol. 38, pp. 1075-1088.

39. Troshichev O.A., Janzhura A.S., Stauning P. Unified PCN and PCS indices: method of calculation, physical sense and dependence on the IMF azimuthal and northward components. J. Geophys. Res. 2006, vol. 111, A05208. DOI:https://doi.org/10.1029/2005JA011402.

40. Tsurutani B.T., Gonzalez W.D. The interplanetary causes of magnetic storms: a review. Magnetic storms. Washington, 1997, pp. 77-89. (AGU Monograph. vol. 98). DOI:https://doi.org/10.1029/GM098.

41. Tsurutani B.T., Echer E., Shibata K., Verkhoglyadova O.P., Mannucci A.J., Gonzalez W.D., Pätzold M. The interplanetary causes of geomagnetic activity during the 7-17 March 2012 interval: a CAWSES II overview. J. Space Weather and Space Climate. 2014, vol. 4, A02. DOI:https://doi.org/10.1051/swsc/2013056.

42. Velichko V.A., Boroyev R.N., Gelberg M.G., Baishev D.G., Olson J.V., Morris R.J., Yumoto K. North-south asymmetry of the substorm intensity depending on the IMF By-component. Earth, Planets and Space. 2002, vol. 54, no. 10, pp. 955-961. DOIhttps://doi.org/10.1186/BF03352443.

43. Wang J.-S., Chen Z., Huang C.-M. A method to identify aperiodic disturbances in the ionosphere. Ann. Geophys. 2014, vol. 32, pp. 563-569. DOI:https://doi.org/10.5194/angeo-32-563-2014.

44. Yue C., Zong Q.G., Zhang H., Wang Y.F., Yuan C.J., Pu Z.Y., Fu S.Y., Lui A.T.Y., Yang B., Wang C.R. Geomagnetic activity triggered by interplanetary shocks. J. Geophys. Res. 2010, vol. 115, A00I05. DOI:https://doi.org/10.1029/2010JA015356.

45. Zhang S.-R., Zhang Y., Wang W., Verkhoglyadova O.P. Geospace system responses to the St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res . 2017, vol. 122, pp. 6901-6906. DOI:https://doi.org/10.1002/2017JA024232.

46. Zherebtsov G.A., Pirog O.M., Razuvayev O.I. The high-latitude ionosphere structure and dynamics. Issledovaniyapogeomagnetizmu, aeronomiiifizikeSolntsa [Research on Geomanetism, Aeronomy and Solar Physics]. 1986, is. 76, pp. 165-177.

47. Zhou X., Tsurutani B.T. Interplanetary shock trig-gering of nightside geomagnetic activity: substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 2001, vol. 106, pp. 18957-18967. DOI:https://doi.org/10.1029/2000JA003028.

48. Zolotukhina N., Polekh N., Kurkin V., Pirog O., Samsonov S., Moiseyev A.Magnetospheric disturbances associated with the 13 December 2006 solar flare and their ionospheric effects over North-East Asia. Adv. Space Res. 2012, vol. 49, pp. 883-897.

49. URL: https://cdaweb.gsfc.nasa.gov/cdaweb/istp_public (accessed November 11, 2016).

50. URL: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (accessed January 21, 2018).

51. URL: http://www.solen.info/solar/old_reports (accessed November 2, 2016).

52. URL: https://cdaw.gsfc.nasa.gov/CME_list (accessed May 31, 2016).

53. URL: http://sd-www.jhuapl.edu/Aurora/ovation/ovation_ display.html (accessed December 6, 2017).

54. URL: http://geophys.aari.ru/real_rio_arc.htm (accessed January 25, 2018).

55. URL: http://guvitimed.jhuapl.edu/guvi-galleryl3on2 (accessed April 12, 2018).

56. URL: http://ulcar.uml.edu/DIDBase (accessed April 12, 2018).

57. URL: http://wdc.nict.go.jp/IONO/HP2009/ISDJ/index-E.html (accessed April 14, 2016).

58. URL: http://stdb2.stelab.nagoya-u.ac.jp/mm210 (accessed April 12, 2018).

59. URL: http://pc-index.org (accessed April 12, 2018).

60. URL: http://guvitimed.jhuapl.edu (accessed April 12, 2018).

Войти или Создать
* Забыли пароль?