Ранее авторами изучалась фредгольмовость двумерных интегральных операторов с однородными ядрами послойно сингулярного типа. Для такого класса операторов символическое исчисление строилось методами теории операторов билокального типа В. С. Пилиди, и фредгольмовость выражалась через обратимость двух семейств: семейства операторов одномерной свёртки и семейства одномерных сингулярных интегральных операторов с непрерывными коэффициентами. Цель данной работы — изучение составных двумерных интегральных операторов с однородными ядрами послойно сингулярного типа, аналогичных введенным И. Б. Симоненко операторам составной континуальной свёртки. Это исследование проводится в рамках изучения более общей алгебры операторов с однородными ядрами, которые послойно являются сингулярными операторами с кусочно-непрерывными коэффициентами. Для изучаемых операторов построено символическое исчисление и найдены необходимые и достаточные условия фредгольмовости.
сингулярные уравнения, операторы свёртки, однородные ядра, фредгольмовость
Исследование в пространстве , где 1<p<+∞, n
2операторов вида:
c однородными, степени (−n), ядрами начато Л. Г. Михайловым. Вопросам разрешимости таких операторов с переменными коэффициентами посвящены работы Н. К. Карапетянца, С. Г. Самко, О. Г. Авсянкина и других авторов ([1, 2] и цитированные в них источники). Кроме условий однородности в данных работах на ядра накладывались и существенно использовались условия
инвариантности относительно диагонального действия группы ортогональных преобразований SO(n). В [3, 4] рассматривались классы ядер компактного и сингулярного типа, включающие в себя SO(n)-инвариантные ядра, а также методами теории операторов локального [5] и билокального типа [6] исследовалась разрешимость операторов с однородными ядрами и переменными коэффициентами. Топологические свойства пространств обратимых и фредгольмовых операторов из этого класса изучались в [7]. Ключевым моментом при исследовании различных классов операторов с однородными ядрами является установление связи с соответствующими алгебрами операторов свртки.
1. Karapetiants, N., Samko, S. Equations with Involutive Operators. Boston, Basel, Berlin : Birkhauser, 2001, 427 p.
2. Авсянкин, О. Г. Об алгебре парных интегральных операторов с однородными ядрами / О. Г. Авсянкин // Математические заметки. - 2003. - Т. 73, вып. 4. - C. 483-493.
3. Деундяк, В. М. Многомерные интегральные операторы с однородными ядрами компактного типа и мультипликативно слабо осциллирующими коэффициентами / В. М. Деундяк // Математические заметки. - 2010. - Т. 87, № 5. - С. 713-729.
4. Деундяк, В. М. Об интегральных операторах с однородными ядрами послойно сингулярного типа в пространстве 2 p L R / В. М. Деундяк, Е. А. Степанюченко // Вестник Дон. гос. техн. ун-та. - 2007. - Т. 7, № 2 (32). - С. 161-168.
5. Симоненко, И. Б. Локальный метод в теории инвариантных относительно сдвига операторов их огибающих / И. Б. Симоненко. - Ростов-на-Дону : ЦВВР, 2007. - 120 с.
6. Пилиди, В. С. О бисингулярном уравнении в пространстве p L / В. С. Пилиди // Математические исследования. - 1972. - Т. 7, № 3. - С. 167-175.
7. Деундяк, В. М. Топологические методы в теории разрешимости многомерных парных интегральных операторов с однородными ядрами компактного типа / В. М. Деундяк // Труды МИАН. - 2012. - Т. 278. - С. 59-67.
8. Симоненко, И. Б. Операторы типа свёртки в конусах / И. Б. Симоненко // Математический сборник. - 1967. - Т. 74, № 2. - С. 298-314.
9. Пилиди, В. С. Локальный метод в теории операторов типа бисингулярных уравнений / В. С. Пилиди, Л. И. Сазонов // Известия вузов. Сев.-Кавк. регион. Естеств. науки. Спецвыпуск. Псевдодифференциальные уравнения и некоторые проблемы математической физики. - 2005. - С. 100-106.
10. Деундяк, В. М. Символы и гомотопическая классификация семейств одномерных сингулярных операторов с кусочно-непрерывными коэффициентами / В. М. Деундяк, И. Б. Симоненкo, Чинь Шок Минь // Известия вузов. Математика. - 1988. - № 12. - C. 17-27.
11. Дудучава, Р. В. Интегральные операторы свёртки на квадранте с разрывными символами / Р. В. Дудучава // Известия АН СССР, серия «Математика». - 1976. - T. 40, № 2. - C. 388-407.
12. Деундяк, В. М. Об одной алгебре операторов билокального типа в Lp (R *T) / В. М. Деундяк, Е. А. Степанюченко // Интегро-дифференциальные операторы и их приложения : межвуз. сб. науч. трудов. - Ростов-на-Дону, 2007. - С. 59-66.
13. Пилиди, В. С. Локальный метод в теории линейных операторных уравнений типа бисингулярных интегральных уравнений / В. С. Пилиди // Математический анализ и его приложения. - 1971. - Т. 3. - С. 81-105.
14. Каш, Ф. Модули и кольца / Ф. Каш. - Москва : Мир, 1981. - 368 с.
15. Деундяк, В. М. Канонические представления и ядра предсимволов бисингулярных интегральных операторов / В. М. Деундяк // Вестник Дон. гос. техн. ун-та. - 2004. - Т. 4, № 1 (19). - С. 3-8.