Брянская область, Россия
Брянская область, Россия
ГРНТИ 06.01 Общие вопросы экономических наук
ББК 65 Экономика. Экономические науки
Рассмотрены особенности реализации информационно-советующей системы планирования основных параметров производственных процессов в условиях функционирования целлюлозно-бумажного комбината. В частности, представлены математические модели расчета оптимальных объемов производства валовой продукции в натуральном выражении и стоимостном выражении. Описан механизм реализации программных подсистем расчета полной себестоимости матричным методом и подсистемы расчета оптимальной производственной цены единицы продукции в среде MATLAB, который позволяет обосновывать рыночные цены, планировать производственную программу с позиции получения наибольших экономических выгод.
информационно-советующая система, метод, производственные процессы, производственная программа, себестоимость.
Введение. Современные реалии таковы, что действующая политика успешных компаний направлена на совершенствование механизма стратегического управления, через мониторинг угроз, развитие механизмов бенч-маркинга, внедрение концепции бережливого производства, использование нетрадиционных методов решения задач в оптимизации бизнес-процессов, что в результате способствует обеспечению конкурентных преимуществ и дает возможность эффективно вести бизнес. Особая роль в данном случае отводится поддержке производственных процессов современными интеллектуальными информационными системами. Это позволяет усовершенствовать механизм ценообразования на основе объективной оценки себестоимости выпускаемой продукции.
Проведенный анализ системы производственного планирования промышленных предприятий, функционирующих на территории Брянской области, выявил ряд проблем, наиболее важными среди которых являются следующие:
- целесообразность определения норм расхода условно-постоянных ресурсов;
- расчет полной себестоимости единицы продукции при помощи калькулирования;
- достоверность расчета производственной цены единицы продукции;
- объективность планирования производственной программы в натуральном и в стоимостном выражении.
Данные обстоятельства обусловлены в большей степени неэффективностью применяемых математических моделей и низкой степенью автоматизации процедур планирования, что приводит к заниженным данным о себестоимости выпускаемой продукции, использовании неточностей при определении производственной программы, как в целом по предприятию, так и по отдельным видам продукции, и, в результате к ошибочной информации относительно доходов, расходов и прибыли компании. Поэтому, исследования, направленные на разработку информационно-советующей системы планирования основных параметров производственных процессов, являются актуальными.
Методология. В качестве среды разработки был выбран пакет прикладных программ MATLAB, позволяющий принять оптимальное решение относительно интересующих производственных параметров. Разработанные математические модели и подсистемы программного приложения апробированы на примере целлюлозно-бумажного комбината, имеющего 6 производственных цехов, один из которых производит товарную продукцию, пять - продукцию для внутреннего потребления, используемую в производстве как ресурсы собственного потребления (РСП).
Основная часть. Для заполнения исходных данных вся информация, связанная с производственной программой, представляется в виде следующих исходных матриц (рисунок 1).
Где
Рис. 1. Подсистема ввода исходных данных
Е – единичная матрица (соответствует размерности матриц А).
Оптимальные объемы производства валовой продукции в натуральном выражении рассчитываются с помощью функции Gross_Callback:
function Gross_Callback(hObject, eventdata, handles)
global A; global Y; global E; global X; global Y1; global PM;
X1 = inv(E-A);
PM =Y(:,1);
Y1 =Y(:,2);
X = X1*Y1;
Indicator = [PM X];
set(handles.Indicators,'Data',Indicator);
Нормы условно-постоянных расходов должны быть на единицу продукции, как и условно-переменные расходы. В производстве комбината условно-постоянными считаются три вида производственных первичных ресурсов - это цеховые, общезаводские и прочие.
Для представления норм условно-постоянных расходов в среде Matlab разработана экранная форма CalculatedData (рисунок 2)
Рис. 2. Расчет оптимальных значений норм расходов условно-постоянных ресурсов
Расчет оптимальных значений норм условно-постоянных расходов реализуется функцией NewRate_Callback:
function NewRate_Callback(hObject, eventdata, handles)
global X; global D; global DD; global CR; global NewCR; global PM;
X1=X(1,1); PM1=PM(1,1); CR1=CR(:,1);
NewCR1=CR1*PM1/X1;
X2=X(2,1); PM2=PM(2,1); CR2=CR(:,2);
NewCR2=CR2*PM2/X2;
X3=X(3,1); PM3=PM(3,1); CR3=CR(:,3);
NewCR3=CR3*PM3/X3;
X4=X(4,1); PM4=PM(4,1); CR4=CR(:,4);
NewCR4=CR4*PM4/X4;
X5=X(5,1); PM5=PM(5,1); CR5=CR(:,5);
NewCR5=CR5*PM5/X5;
X6=X(6,1); PM6=PM(6,1); CR6=CR(:,6);
NewCR6=CR6*PM6/X6;
NewCR=[NewCR1 NewCR2 NewCR3 NewCR4 NewCR5 NewCR6];
set(handles.RateUPR,'Data',NewCR);
DD1=D(1:17,:);
DD=[DD1; NewCR];
В практике экономических расчетов для определения производственной себестоимости единицы продукции (работ, услуг) применяются калькуляционные таблицы с классификацией затрат по статьям затрат. Калькуляционная таблица как экономический инструмент выполняет две основные функции: во-первых, как расчетная функция она является инструментом расчета полной себестоимости единицы продукции (работы, услуги); во-вторых, как аналитическая функция она является инструментом экономического анализа структуры затрат на производство продукции (работ, услуг).
Для точного расчета полной себестоимости единицы продукции необходимо знать истинную себестоимость электроэнергии, которую производит сам комбинат. На практике в таких случаях рассчитывают и принимают приближенное значение (например, в пределах рыночной цены). Однако такое неточно рассчитанное значение себестоимости единицы продукции влечет за собой искажение расчетов себестоимостей для всей остальной продукции.
Полностью лишен недостатков, характерных для традиционного способа расчета себестоимости единицы продукции, второй способ – нетрадиционный [1].
В качестве инструмента для измерения себестоимости единицы продукции (работ, услуг) предлагается матричная формула, реализованная в функции pushbutton2_Callback:
function pushbutton2_Callback(hObject, eventdata, handles)
global DD; global E; global C; global A; global P; global PA;
PA=inv(E-A');
PD=DD';
PP=PA*PD;
P=PP*C;
set(handles.Price,'Data',P);
В отличие от метода калькуляций, рассчитав полные себестоимости по матричной формуле, сами калькуляции по любой продукции могут быть представлены в любой момент времени в любой последовательности.
Предприятию, производителю продукции, важно знать не только истинное значение себестоимости производства единицы продукции, но и производственную цену продукции, которая обеспечивала бы желаемый (плановый) уровень рентабельности [1]. Знание величины этой цены позволило бы маркетинговой службе предприятия объективно, в соответствии с реалиями, подыскать наиболее выгодных и доступных потребителей своей продукции.
Поскольку основу производственной цены продукции составляет себестоимость, эта матричная формула может быть использована и для расчетов цены производителя для всех n видов продукции (работ, услуг). Для этого необходимо дополнить [1]:
а) матрицу D одной, последней, (L + R + 1)-й строкой. Элементы в этой строке характеризуют прибыль (руб./е.и.п.), которую планирует (желает) иметь предприятие с единицы соответствующего вида продукции (работ, услуг);
б) вектор С одним, последним, (L + R + 1)-м элементом, который, естественно, будет равен единице.
Для представления и расчета результатов производственной цены единицы продукции в среде Matlab разработана экранная форма CalculatedData (рисунок 3)
Рис. 3 Результаты расчета оптимальной производственной цены единицы продукции
Эти значения могут быть использованы на предприятии в качестве трансфертной цены, которая может быть справедливым инструментом распределения общей прибыли, полученной предприятием от реализации товарной продукции.
Реальность планируемой производственной программы должна быть в первую очередь обоснована потребностями в соответствующей продукции, а также наличием производственных мощностей, материальных, трудовых и финансовых ресурсов.
Наиболее действенным методом планирования, позволяющим разработать обоснованную производственную программу, является балансовый метод.
Экранные формы производственных программ комбината в целом и в разрезе производственных программ цехов в натуральном и стоимостном выражении представлены на рисунке 4.
Рис. 4. Оптимальные значения производственных программ в натуральном и стоимостном выражении
Расчет производственной программы предприятия в информационно-советующей системе реализуется функцией pushbutton1_Callback.
function pushbutton1_Callback(hObject, eventdata, handles)
global X; global Y1; global Nat; global PPP;
ST=Nat.*PPP; ST1=ST(1,:);
SVO1= sum (ST1); ST2=ST(2,:);
SVO2= sum (ST2); ST3=ST(3,:);
SVO3= sum (ST3); ST4=ST(4,:);
SVO4= sum (ST4); ST5=ST(5,:);
SVO5= sum (ST5); ST6=ST(6,:);
SVO6= sum (ST6);
SVO = [SVO1; SVO2; SVO3; SVO4; SVO5; SVO6];
Y1=Y1.*PPP;
X=X.*PPP;
STProgramO = [ST SVO Y1 X];
STProgramO1=STProgramO (:, 1); STVO1= sum (STProgramO1);
STProgramO2=STProgramO (:, 2); STVO2= sum (STProgramO2);
STProgramO3=STProgramO (:, 3); STVO3= sum (STProgramO3);
STProgramO4=STProgramO (:, 4); STVO4= sum (STProgramO4);
STProgramO5=STProgramO (:, 5); STVO5= sum (STProgramO5);
STProgramO6=STProgramO (:, 6); STVO6= sum (STProgramO6);
STProgramO7=STProgramO (:, 7); STVO7= sum (STProgramO7);
STProgramO8=STProgramO (:, 8); STVO8= sum (STProgramO8);
STProgramO9=STProgramO (:, 9); STVO9= sum (STProgramO9);
STVO = [STVO1 STVO2 STVO3 STVO4 STVO5 STVO6 STVO7 STVO8 STVO9];
STProgram = [STProgramO; STVO];
set(handles.STPP,'Data',STProgram);
Именно балансовый метод и использован в межоперационных балансах затрат и результатов производства, где результаты – производственная программа предприятия в целом – представляются совокупностью строк элементов первого и второго квадрантов межоперационного баланса, каждая строка которых характеризует производственную программу соответствующего подразделения (цеха).
Выводы. Разработанная информационно-советующая система позволит рассчитать оптимальные объемы производства валовой продукции в натуральном выражении, а также оптимальные нормы условно-постоянных расходов наиболее действенным методом планирования - балансовым методом.
В качестве инструмента для измерения себестоимости единицы продукции (работ, услуг) предлагается матричная формула, реализованная в функции pushbutton2_Callback. Данный метод полностью лишен недостатков, характерных для традиционного способа расчета себестоимости единицы продукции
Расчётные значения оптимальной производственной цены единицы продукции могут быть использованы на предприятии в качестве трансфертной цены, которая может быть справедливым инструментом распределения общей прибыли, полученной предприятием от реализации товарной продукции.
1. Каргополов М.Д. Балансовые методы в экономических расчетах на предприятии. Сев. (Арктич.) федер. ун-т. Архангельск: ИПЦ САФУ, 2012. 87 с
2. Баврин И.И. Математическая обработка информации [Электронный ресурс]: учебник для студентов всех профилей направления "Педагогическое образование". Электрон. текстовые данные. М.: Прометей, 2016. 262 с. Режим доступа: http://www.iprbookshop.ru/58146.- ЭБС "IPR-books".
3. Горбунов В.Л. Бизнес-планирование [Электронный ресурс]. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 141 с. Режим доступа: http://www.iprbookshop.ru/56371. ЭБС "IPR-books".
4. Джон Джестон, Йохан Нелис Управление бизнес-процессами [Электронный ресурс]: практическое руководство по успешной реализации проектов. Электрон. текстовые данные. М.: Альпина Паблишер, 2016. 648 с. Режим доступа: http://www.iprbookshop.ru/48468. ЭБС "IPRbooks.
5. Каран Гиротра, Сергей Нетесин Оптимальная бизнес-модель [Электронный ресурс]: четыре инструмента управления рисками. Электрон. текстовые данные. М.: Альпина Паблишер, 2014. 216 с. Режим доступа: http://www.iprbookshop.ru/34786/- ЭБС "IPRbooks".