РЕЛЯТИВИСТСКИЕ ЭЛЕКТРОНЫ ВНЕШНЕГО РАДИАЦИОННОГО ПОЯСА И МЕТОДЫ ИХ ПРОГНОЗА (ОБЗОР)
Рубрики: ОБЗОРЫ
Аннотация и ключевые слова
Аннотация (русский):
В статье дан обзор исследований по динамике релятивистских электронов в области гео-синхронной орбиты. Перечислены физические процессы, которые приводят к ускорению электронов, заполняющих внешний радиационный пояс. Являясь одним из факторов космической погоды, потоки высокоэнергичных электронов представляют серьезную угрозу для функционирования спутниковой аппаратуры в одной из наиболее заселенных орбитальных областей. Подчеркнута необходимость усилий по разработке методов прогноза радиационной обстановки в этой части магнитосферы, перечислены возможные предикторы и дана их классификация. Приведен пример прогностической модели для предсказания потока релятивистских электронов с заблаговременностью 1–2 сут. Обсуждаются некоторые вопросы практической организации прогнозирования, перечислены основные задачи краткосрочного, среднесрочного и долгосрочного прогнозов.

Ключевые слова:
радиационные пояса, релятивистские электроны, прогноз, магнитосфера, солнечный ветер
Текст
Текст произведения (PDF): Читать Скачать

ВВЕДЕНИЕ

Одним из первых научных достижений начала космической эры было обнаружение в 1958 г. Дж. Ван Алленом и группами С.Н. Вернова и В.И. Красовского радиационных поясов Земли [Темный, 1993]. Именно В.И. Красовский первым предположил, что зарегистрированные на третьем советском спутнике электроны не достигали плотной атмосферы потому, что были захвачены магнитным полем Земли. Это открытие привело к формированию полноценного научного направления, изучающего динамику потоков энергичных частиц в геомагнитном поле. С одной стороны, перманентное наличие потоков заряженных частиц в магнитосфере является важнейшей характеристикой ее состояния, а с другой — радиационные пояса могут создавать серьезную угрозу для пилотируемых космических аппаратов, направляющихся к Луне, и мешать нормальной работе спутниковой аппаратуры.

Считается, что в земной магнитосфере имеется два постоянно существующих радиационных пояса: внутренний, образуемый в основном протонами, и внешний, заселенный энергичными электронами. Такое разделение в значительной мере условно, поскольку, например, на магнитной оболочке L=1.2–1.5 существует стабильный пояс электронов с энергией Е>20 МэВ [Гальпер и др., 1983]. Положение максимума потока протонов зависит от их энергии и сдвигается от L=1.5 до L=3 при уменьшении энергии от 100 МэВ до 1 МэВ. Пик интенсивности электронных потоков почти для всего диапазона энергий (от 40 кэВ до 2 МэВ) располагается в интервале магнитных оболочек L=5–6. На высоте геосинхронной орбиты концентрация электронов c энергией около 1 МэВ на три порядка превышает концентрацию протонов той же энергии, что сохраняет примерно равной плотность энергии этих частиц [Borovsky et al., 2016]. По наблюдениям геосинхронных спутников, энергетический спектр электронов в диапазоне от 50 кэВ до 1.5 МэВ подчиняется степенному закону; показатель степени может меняться в широких пределах — от –6 до –2 [Freeman et al., 1998; Xiao et al., 2008].

В данном обзоре мы ограничимся ролью радиационных поясов в формировании космической погоды. В англоязычной литературе высокоэнергичные электроны внешнего радиационного пояса называют электронами-убийцами (killer electrons).

Список литературы

1. Гальпер А.М., Грачев В.М., Дмитриенко В.В. и др. Новая компонента внутреннего радиационного пояса Земли — электроны высоких энергий // Письма в ЖЭТФ. 1983. Т. 38, № 8. С. 409–411.

2. Губарь Ю.И. Дрейфовый резонанс релятивистских электронов с УНЧ-волнами как нелинейный резонанс // Космич. исслед. 2010. Т. 48, № 4. С. 308–316.

3. Кузнецов С.Н. Избранные труды по солнечно-земной физике / Под ред. проф. М.И. Панасюка. М.: Университетская книга, 2010. 256 с.

4. Пилипенко В.А., Романова Н.В. Воздействие космической погоды на работу космических аппаратов // Геофизич. исслед. 2005. № 2. C. 71–82.

5. Потапов А.С., Цэгмед Б., Рыжакова Л.В. Связь потоков релятивистских электронов на геостационарной орбите с уровнем УНЧ-активности на поверхности Земли и в солнечном ветре в 23-м цикле солнечной активности // Космич. исслед. 2012. Т. 50, № 2. С. 130–146.

6. Потапов А.С., Рыжакова Л.В., Цэгмед Б. Метод прогнозирования потока релятивистских электронов на геостационарной орбите // Вестник СибГАУ. 2016. Т. 17, № 3. С. 611–617.

7. Романова Н.В., Пилипенко В.А., Ягова Н.В., Белов А.В. Статистическая связь частоты сбоев на геостационарных спутниках с потоками энергичных электронов и протонов // Космич. исслед. 2005. Т. 43, № 3. С. 186–193.

8. Романова Н.В., Чиженков В.А., Пилипенко В.А. Возможная связь аварий при запусках космических аппаратов с космодрома Плесецк с высокоширотными геомагнитными возмущениями // Геомагнетизм и аэрономия. 2009. Т. 49, № 1. C. 111–116.

9. Тверской Б.А. Захват быстрых частиц из межпланетного пространства // Изв. АН СССР. Сер. физ. 1964. Т. 28. С. 2099–2103.

10. Тверской Б.А. Динамика радиационных поясов Земли. М.: Наука, 1968. 224 с.

11. Темный В.В. История открытия радиационных поясов Земли: кто же, когда и как? // Земля и Вселенная. 1993. № 5. С. 69–76.

12. Широкий В.Р., Доленко С.А., Мягкова И.Н., Сентемова Н.С. Исследование горизонта нейросетевого прогнозирования состояния магнитосферы Земли // XVIII Международная научно-техническая конференция «Нейроинформатика-2016»: Сборник научных трудов. В 3 частях. М.: НИЯУ МИФИ, 2016. Ч. 1. С. 172–182.

13. Baker D.N. The occurrence of operational anomalies in spacecraft and their relationship to space weather // IEEE Trans. Plasma Sci. 2000. V. 28. P. 2007–2016.

14. Baker D. Satellite anomalies due to space storms // Space storms and space weather hazards / Ed. Daglis I.A. New York: Springer, 2001. Chapter 10. P. 251–284.

15. Baker D.N., Higbie P.R., Belian R.D., Hones E.W. Do Jovian electrons influence the terrestrial outer radiation zone? // Geophys. Res. Lett. 1979. V. 6. P. 531–534. DOI: 10.1029/GL006i006 p00531.

16. Baker D.N., Belian R.D., Higbie P.R., et al. Deep dielectric charging effects due to high energy electrons in the Earth’s outer magnetosphere // J. Electrostatics. 1987. V. 20. P. 3–19.

17. Baker D.N., McPherron R.L., Cayton T.E., Klebesadel R.W. Linear prediction filter analysis of relativistic electron properties at 6.6 RE // J. Geophys. Res. 1990. V. 95, N A9. P. 15133–15140. DOI: 10.1029/JA095iA09p15133.

18. Baker D.N., Allen J.H., Kanekal S.G., Reeves G.D. Disturbed space environment may have been related to Pager satellite failure // EOS Trans. AGU. 1998. P. 477.

19. Baker D.N., Kanekal S.G., Blake J.B., Pulkkinen T.I. The global efficiency of relativistic electron production in the Earth's magnetosphere // J. Geophys. Res. 2001. V. 106. P. 19169–19178.

20. Balikhin M.A., Boynton R.J., Walker S.N., et al. Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit // Geophys. Res. Lett. 2011. V. 38. L18105. DOI: 10.1029/2011GL048980.

21. Borovsky J.E., Cayton T.E., Denton M.H., et al. The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms // J. Geophys. Res.: Space Phys. 2016. V. 121. P. 5449–5488. DOI: 10.1002/2016JA022520.

22. Brautigam D.H., Albert J.M. Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm // J. Geophys. Res. 2000. V. 105. P. 291–309. DOI: 10.1029/1999JA900344.

23. Degtyarev V.I., Chudnenko S.E., Kharchenko I.P. Prediction of maximal daily average values of relativistic electron fluxes in geostationary orbit during the magnetic storm recovery phase // Geomagnetism and Aeronomy. 2009a. V. 49, N 8. P. 1208–1217. DOI: 10.1134/S0016793209080349.

24. Degtyarev V.I., Kharchenko I.P., Potapov A.S., et al. Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth's outer radiation belt using geomagnetic pulsations data // Adv. Space Res. 2009b. V. 43. P. 829–836. DOI: 10.1016/j.asr.2008.07.004.

25. Degtyarev V.I., Kharchenko I.P., Potapov A.S., et al. The relation between geomagnetic pulsations and an increase in the fluxes of geosynchronous relativistic electrons during geomagnetic storms // Geomagnetism and Aeronomy. 2010. V. 50, N 7. P. 885–893. DOI: 10.1134/S0016793210070108.

26. Efitorov A., Myagkova I., Sentemova N., et al. Prediction of relativistic electrons flux in the outer radiation belt of the Earth using adaptive methods // Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. Springer International Publishing, 2016. P. 281–287. (Adv. Intelligent Systems and Computing. V. 449). URL: http://link.springer.com/chapter/ 10.1007%2F978-3-319-32554-5_36#page-1 (дата обращения 30 сентября 2016 г.).

27. Elkington S.R., Hudson M.K., Chan A.A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations // Geophys. Res. Lett. 1999. V. 26, N 21. P. 3273–3276.

28. Fujimoto M., Nishida A. Energization and anisotropization of energetic electrons in the Earth’s radiation belt by the recirculation process // J. Geophys. Res. 1990. V. 95, A4. P. 4265–4270. DOI: 10.1029/JA095iA04p04265.

29. Freeman J.W., O’Brien T.P., Chan A.A., Wolf R.A. Energetic electrons at geostationary orbit during the November 3–4, 1993 storm: Spatial/temporal morphology, characterization by a power law spectrum and, representation by an artificial neural network // J. Geophys. Res. 1998. V. 103. P. 26251–26260. DOI: 10.1029/97JA03268.

30. Friedel R.H.W., Reeves G.D., Obara T. Relativistic electron dynamics in the inner magnetosphere — A review // J. Atmos. Solar Terr. Phys. 2002. V. 64. P. 265–282.

31. Green J.C., Kivelson M.G. Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms // J. Geophys. Res. 2004. V. 109. A03213. DOI: 10.1029/2003JA010153.

32. Horne R.B., Thorne R.M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms // Geophys. Res. Lett. 1998. V. 25. P. 3011–3014. DOI: 10.1029/98GL01002.

33. Hudson M.K., Elkington S.R., Lyon J.G., Goodrich C.C. Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure // Adv. Space Res. 2000. V. 25, N 12. P. 2327–2337. DOI: 10.1016/S0273-1177(99)00518-9.

34. Kellerman A.C., Shprits Y.Y. On the influence of solar wind conditions on the outer-electron radiation belt // J. Geophys. Res. 2012. V. 117. A05217. DOI: 10.1029/2011JA017253.

35. Kessel M. Things we do not yet understand about solar driving of the radiation belts // J. Geophys. Res.: Space Phys. 2016. V. 121. P. 5549–5552. DOI: 10.1002/2016JA022472.

36. Li X., Temerin M., Baker D.N., et al. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements // Geophys. Res. Lett. 2001. V. 28. P. 1887–1890. DOI: 10.1029/2000GL012681.

37. Li L., Cao J., Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit // J. Geophys. Res. 2005. V. 110. A03203. DOI: 10.1029/2004JA010628.

38. Li L.Y., Cao J.B., Zhou G.C., Li X. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population // J. Geophys. Res. 2009. V. 114. A12214. DOI: 10.1029/2009JA014333.

39. Li L.Y., Cao J.B., Zhou G.C., Li X. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population // J. Geophys. Res. 2009. V. 114. A12214. DOI: 10.1029/2009JA014333.

40. Ling A.G., Ginet G.P., Hilmer R.V., Perry K.L. A neural network-based geosynchronous relativistic electron flux forecasting model // Space Weather. 2010. V. 8. S09003. DOI: 10.1029/2010SW000576.

41. Lyatsky W., Khazanov G.V. Effect of geomagnetic disturbances and solar wind density on relativistic electrons at geostationary orbit // J. Geophys. Res. 2008. V. 113. A08224. DOI: 10.1029/2008JA013048.

42. Lyons L.R., Lee D.-Y., Thorne R.M., et al. Solar wind-magnetosphere coupling leading to relativistic electron energization during high-speed streams // J. Geophys. Res. 2005. V. 110. A11202. DOI: 10.1029/2005JA011254.

43. Mann I.R., O’Brien T.P., Milling D.K. Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: Solar cycle dependence // J. Atmosph. Solar-Terr. Phys. 2004. V. 66. P. 187–198.

44. Mathie R.A., Mann I.R. On the solar wind control of Pc5 ULF pulsation power at midlatitudes: Implications for MeV electron acceleration in the outer radiation belt // J. Geophys. Res. 2001. V. 106. P. 29783–29796.

45. Miyoshi Y., Kataoka R. Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions // Geophys. Res. Lett. 2005. V. 32. L21105. DOI: 10.1029/2005GL024590.

46. Miyoshi Y., Kataoka R. Flux enhancement of the outer radiation belt electrons after the arrival of stream interaction regions // J. Geophys. Res. 2008. V. 113. A03S09. DOI: 10.1029/2007JA012506.

47. Myagkova I.N., Dolenko S.A. Comparative analysis of the quality of prediction for fluences of relativistic electrons of the outer radiation belt of the Earth at different phases of the solar activity cycle // 11th International Conference “Problems of Geocosmos”: Book of Abstracts. St. Petersburg, Petrodvorets, October 3–7, 2016. St. Petersburg State University, 2016. P. 79.

48. Nagai T. Space weather forecast: Prediction of relativistic electron intensity at synchronous orbit // Geophys. Res. Lett. 1988. V. 15. P. 425–428.

49. O’Brien T.P., Lorentzen K.R., Mann I.R., et al. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration // J. Geophys. Res. 2003. V. 108, N A8. P. 2156–2202. DOI: 10.1029/2002JA009784.

50. Ozeke L.G., Mann I.R., Murphy K.R., et al. Analytic expressions for ULF wave radiation belt radial diffusion coefficients // J. Geophys. Res. Space Phys. 2014. V. 119. P. 1587–1605. DOI: 10.1002/2013JA019204.

51. Parker E.N. Geomagnetic fluctuations and the form of the outer zone of the Van Allen radiation belt // J. Geophys. Res. 1960. V. 65, N 10. P. 3117–3130. DOI: 10.1029/JZ065i010 p03117.

52. Paulikas G.A., Blake J.B. Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit // Quantitative Modeling of Magnetospheric Processes. 1979. P. 180–202. (Geophys. Monogr. Amer. Geophys. Un. V. 21).

53. Perry K.L., Ginet G.P., Ling A.G., Hilmer R.V. Comparing geosynchronous relativistic electron prediction models // Space Weather. 2010. V. 8. S12002. DOI: 10.1029/2010SW000581.

54. Pilipenko V., Yagova N., Romanova N., Allen J. Statistical relationships between the satellite anomalies at geostationary orbits and high-energy particles // Adv. Space Res. 2006. V. 37, N 6. P. 1192–1205.

55. Potapov A.S. ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere // J. Geophys. Res.: Space Phys. 2013. V. 118, N 10. P. 6465–6477. DOI: 10.1002/ 2013JA019119.

56. Potapov A.S., Tsegmed B., Ryzhakova L.V. Solar cycle variation of “killer” electrons at geosynchronous orbit and electron flux correlation with the solar wind parameters and ULF waves intensity // Acta Astronautica. 2014. V. 93. P. 55–63. DOI: 10.1016/j.actaastro.2013.07.004.

57. Potapov A.S., Ryzhakova L.V., Tsegmed B. A new approach to predict and estimate enhancements of “killer” electron flux at geosynchronous orbit // Acta Astronautica. 2016. V. 126. P. 47–51. DOI: 10.1016/j.actaastro.2016.04.017.

58. Reeves G.D., McAdams K.L., Friedel R.H.W., O’Brien T.R. Acceleration and loss of relativistic electrons during geomagnetic storms // Geophys. Res. Lett. 2003. V. 30, N 10. 1529. DOI: 10.1029/2002GL016513.

59. Reeves G.D., Morley S.K., Friedel R.H.W., et al. On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited // J. Geophys. Res. 2011. V. 116. A02213. DOI: 10.1029/2010JA015735.

60. Roeder J. L., Fennell J. F., O’Brien T. P. Acceleration and losses of relativistic electrons due to whistler-mode chorus: SCATHA observations // AGU Fall Meeting, 2005. Abstract #SM41D-07.

61. Romanova N., Pilipenko V. ULF wave indices to characterize the solar wind – magnetosphere interaction and relativistic electron dynamics // Acta Geophys. 2009. V. 57. P. 158–170. DOI: 10.2478/s11600-008-0064-4.

62. Romanova N., Pilipenko V., Crosby N., Khabarova O. ULF wave index and its possible applications in space physics // Bulg. J. Phys. 2007. V. 34. P. 136–148.

63. Sakaguchi K., Nagatsuma T., Reeves G.D., Spence H.E. Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models // Space Weather. 2015. V. 13. P. 853–867. DOI: 10.1002/2015SW001254.

64. Schulz M., Lanzerotti L. Particle Diffusion In The Radiation Belts. Berlin: Springer, 1974. 218 p.

65. Sheldon R.B., Spence H.E., Sullivan J.D., et al. The discovery of trapped energetic electrons in the outer cusp // Geophys. Res. Lett. 1998. V. 25, N 11. P. 1825–1828.

66. Shprits Y., Drozdov A.Y., Spasojevic M., et al. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts // Nature Communications. 2016. V. 7. 12883. DOI: 10.1038/ncomms12883.

67. Simms L.E., Pilipenko V., Engebretson M.J., et al. Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis // J. Geophys. Res.: Space Phys. 2014. V. 119, N 9. P. 7297–7318. DOI: 10.1002/ 2014JA019955.

68. Simms L.E., Engebretson M.J., Smith A.J., et al. Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit // J. Geophys. Res.: Space Phys. 2015. V. 120. P. 2052–2060. DOI: 10.1002/2014JA020337.

69. Simms L.E., Engebretson M.J., Pilipenko V., et al. Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis // J. Geophys. Res.: Space Phys. 2016. V. 121. P. 3181–3197. DOI: 10.1002/2016JA022414.

70. Summers D., Ma C. A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions // J. Geophys. Res. 2000. V. 105, N A2. P. 2625–2640. DOI: 10.1029/1999JA900444.

71. Summers D., Ni B., Meredith N.P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves // J. Geophys. Res. 2007. V. 112. A04207. DOI: 10.1029/2006JA011993.

72. Turner D.L., Morley S.K., Miyoshi Y., et al. Outer radiation belt flux dropouts: Current understanding and unresolved questions // Dynamics of Earth’s Radiation Belts and Inner Magnetosphere / Ed. by D. Summers et al. 2012. P. 195–212. (Geophys. Monogr. Ser. V. 199). DOI: 10.1029/2012GM001310.

73. Ukhorskiy A.Y., Sitnov M.I., Sharma A.S., et al. Data-derived forecasting model for relativistic electron intensity at geosynchronous orbit // Geophys. Res. Lett. 2004. V. 31. L09806. DOI: 10.1029/2004GL019616.

74. Ukhorskiy A.Y., Sitnov M.I., Millan R.M. Enhanced radial transport and energization of radiation belt electrons due to drift orbit bifurcations // J. Geophys. Res.: Space Phys. 2014. V. 119. P. 163–170. DOI: 10.1002/2013JA019315.

75. Ukhorskiy A.Y., Sitnov M.I., Millan R.M., et al. Global storm time depletion of the outer electron belt // J. Geophys. Res.: Space Phys. 2015. V. 120. P. 2543–2556. DOI: 10.1002/2014JA020645.

76. Weigel R.S., Klimas A.J., Vassiliadis D. Precursor analysis and prediction of large-amplitude relativistic electron fluxes // Space Weather. 2003. V. 1. P. 1014. DOI: 10.1029/2003 SW000023.

77. Xiao F., Shen C., Wang Y., et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit // J. Geophys. Res. 2008. V. 113. A05203. DOI: 10.1029/2007JA012903.

78. URL: https://encrypted-tbn0.gstatic.com/images?q=tbn: ANd9GcQRReeeIY4NuZm-hTm8qUT6aNUkZ53jtpeCd8eo6d-pL88X2DVNZw/ (дата обращения 30 сентября 2016 г.).

79. URL: http://www.swpc.noaa.gov/products/relativistic-elect-ron-forecast-model/ (дата обращения 30 сентября 2016 г.).

80. URL: http://ulf.gcras.ru/ (дата обращения 30 сентября, 2016).