A set-theoretic model of a test structure for verifying in silicon libraries of standard digital elements
Abstract and keywords
Abstract (English):
Verification of silicon digital design kit is a critical task for semiconductor technologies across all scales. The transition to advanced submicron technologies has significantly heightened its relevance due to the escalating complexity and cost of VLSI design. This article presents the development of a set-theoretic model for a test structure aimed at verifying standard digital cell libraries. The proposed model formally describes the hierarchy of components, including elements under test (combinational and sequential), selection and control blocks, input stimulus generation blocks, signal output blocks, and auxiliary hierarchical blocks. The model enables the estimation of the number of inputs and outputs of the verification structure based on library characteristics, such as the number of elements, quantity and bit-width of inputs and outputs, and logical functions of the elements. The results of applying the model are demonstrated using industrial libraries with process nodes of 180 nm, 90 nm, and 28 nm. A 6.4-fold increase in the number of tested elements (from 199 to 1274) results in only a 1.3-fold growth in the total number of inputs/outputs (from 25 to 32), confirming the model’s efficiency. Particular emphasis is placed on reducing the test structure area while maintaining verification completeness.

Keywords:
VLSI, standard cell library, silicon verification, set-theoretic model, design automation, submicron technologies.
References

1. Konstruktorsko-tekhnologicheskaya platforma proyekti-rovaniya SBIS na baze otechestvennoy tekhnologii KMOP KNI 180 nm /D. Yu. Kopeykin, O. V. Lastochkin, A. A. Novikov [i dr.] // Rossiyskiy forum mikroelek-tronika 2023: Sbornik tezisov 9-y Nauchnoy konferen-tsii, Moskva, 09–14 oktyabrya 2023 goda. – Moskva: RITS "TEKHNOSFERA", 2023. – S. 343-345

2. H. Cho, H. Seo, S. Chung, K.-M. Choi and T. Kim, "Standard Cell Layout Generator Amenable to Design Technology Co-Optimization in Advanced Process Nodes," 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 2024, pp. 1-6

3. K. Baek and T. Kim, "CSyn-fp: Standard Cell Synthesis of Advanced Nodes With Simultaneous Transistor Folding and Placement," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 43, no. 2, pp. 627-640, Feb. 2024

4. H.-M. Chen, C.-L. Hsiao, W.-T. Chao and I.-C. Hsieh, "On Generating Cell Library in Advanced Nodes: Efforts and Challenges," 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), HsinChu, Taiwan, 2023, pp. 1-4, doi:https://doi.org/10.1109/VLSI-TSA/VLSI-DAT57221.2023.10134126

5. A. Kamath et al., "A Comprehensive Multi-Voltage Design Platform for System-Level Validation of Standard Cell Library," 2021 22nd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 2021, pp. 285-291, doi:https://doi.org/10.1109/ISQED51717.2021.9424350.

6. Kalashnikov, V. S. Complex Standard Cells Design Features in Advanced FinFET Technologies / V. S. Kalashnikov, M. Y. Semenov // Problems in the development of advanced micro- and nanoelectronic systems (MES).– 2022. – No. 1. – P. 35-42. – DOIhttps://doi.org/10.31114/2078-7707-2022-1-35-42.

7. Kuz'minova T. D., Khvatov V. M., Zheleznikov D. A. Formirovaniye sostava redutsirovannoy biblioteki lo-gicheskikh elementov dlya PLIS // Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES). – 2021. – № 4. – S. 34-39. – DOIhttps://doi.org/10.31114/2078-7707-2021-4-34-39

8. C.-K. Cheng, C.-T. Ho, D. Lee, B. Lin, and D. Park, “Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT,” IEEE TVLSI, vol. 29, no. 6, pp. 1178–1191, Jun. 2021.

9. Metod validatsii v kremnii bibliotek standartnykh tsifrovykh elementov / D. Yu. Kopeykin, O. V. Lastochkin, D. S. Shipitsin [i dr.] // Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES). – 2020. – № 4. – S. 140-145. – DOIhttps://doi.org/10.31114/2078-7707-2020-4-140-145

10. Metodika avtomatizirovannoy verifikatsii i validatsii v kremnii komplekta sredstv proyektirovaniya tsif-rovykh SBIS / S. A. Il'in, D. Yu. Kopeykin, O. V. Lastochkin [i dr.] // Nanoindustriya. – 2023. – T. 16, № S9-1(119). – S. 249-252. – DOIhttps://doi.org/10.22184/1993-8578.2023.16.9s.249.252

11. Murashova, Ye. V. Verifikatsiya metodik i yeye otlichiye ot validatsii / Ye. V. Murashova // Kontrol' kachestva pro-duktsii. – 2020. – № 9. – S. 8-13.

12. Nasibullin, K. M. Marshrut processa verifikacii pri proektirovanii sovremennyh tehnologicheskih bibliotek / K. M. Nasibullin, O. R. Zagidullina, A. S. Nadin // Nanoindustriâ. – 2024. – T. 17, № S10-2(128). – S. 793-796. – DOIhttps://doi.org/10.22184/1993-8578.2024.17.10s.793.796.

13. Urokov, A. D. Analiz metodov verifikatsii tsifrovykh skhem / A. D. Urokov, I. N. Chernov, V. I. Timchenko // Podgotovka professional'nykh kadrov v magistrature dlya tsifrovoy ekonomiki (PKM-2022): Sbornik luch-shikh dokladov Vserossiyskoy nauchno-tekhnicheskoy i nauchno-metodicheskoy konferentsii magistrantov i ikh rukovoditeley, Sankt-Peterburg, 06–08 dekabrya 2022 goda / Sost. N.N. Ivanov. – Sankt-Peterburg: Sankt-Peterburgskiy gosudarstvennyy universitet telekom-munikatsiy im. prof. M.A. Bonch-Bruyevicha, 2023. – S.168-172.

14. Obzor logicheskikh bazisov i mikroskhem pri postroyenii kombinatsionnogo ustroystva s uchotom nadozhnosti / F. V. Makarenko, A. S. Yagodkin, K. V. Zol'nikov [i dr.] // Modelirovaniye sistem i protsessov. – 2022. – T. 15, № 1. – S. 115-124. – DOIhttps://doi.org/10.12737/2219-0767-2022-15-1-115-124.

15. Katare Siddharth, Gautam Ajay, John Victor, Meti Rohini, Chitneedi Manoj. (2020). Chip Architecture for Silicon Characterization of Foundry Kit Standard Cells. International Journal of Materials, Mechanics and Manufacturing. 8. 143-147.https://doi.org/10.18178/ijmmm.2020.8.3.497.

Login or Create
* Forgot password?