Russian Federation
"Odd radio circles" up to 300 kpc in diameter, containing dozens of spherical clumps ~15 kpc in di-ameter were detected. Warm gas in the radio circles emits in the UV lines of a number of ions (O, Mg, Ne) with a temperature of ~104 K, broadened by the gas dynamics (~200 km/s) caused by the shock wave. Emission in the optical and near-IR ranges is associated with the stellar continuum. The radio circle may be formed by supernova shock waves amplified by the stellar wind of blue stars in a stellar stream ≥109 years old, containing ≥3∙108 stars, formed by a galaxy with a mass of ~1010 M○. Star formation in a stellar stream can be initiated by gas raked by a shock wave (flowing into its tail) formed around the gas corona of a satellite galaxy moving in intergalactic gas.
odd radio circles, star streams, supernovae, stellar wind
1. R.P. Norris, J.D. Collier, R.M. Crocker, et al. MeerKAT uncovers the physics of an odd radio circle // Monthly Notices of the Royal Astronomical Society. – 2022. – V. 513. – Is. 1. – P. 1300–1316.
2. B.S. Koribalski, R.P. Norris, H. Andernach, L. Rudnick, S. Shabala, M. Filipović, E. Lenc. Discovery of a new extragalactic circular radio source with ASKAP: ORC J0102–2450 // Monthly Notices of the Royal Astronomical Society: Letters – 2021. – V. 505. – Is. 1. – P. L11–L15.
3. A.L. Coil, S. Perrotta, D.S.N. Rupke, et al. Ionized gas extends over 40 kpc in an odd radio circle host galaxy // Nature. – 2024. – V. 625. – P. 459–462.
4. C. Bordiu, M. D. Filipović, G. Umana, et al. MeerKAT reveals a ghostly thermal radio ring towards the Galactic Centre // Astronomy & Astrophysics. – 2024. – V. 690. – A 53. – pp. 7.
5. N. Lehner, et al. Project AMIGA: The Circumgalactic Medium of Andromeda // The Astrophysical Journal. – 2020. – V. 900:9 – N 1. – 44 pp.
6. A.M. Prohorov. Fizicheskaya enciklopediya, t. 2. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1998. – 703 s.
7. A.M. Prohorov. Fizicheskaya enciklopediya, t. 4. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1994. – 704 s.
8. A.M. Prohorov. Fizicheskaya enciklopediya, t. 1. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1988. – 704 s.
9. A.M. Prohorov. Fizicheskaya enciklopediya, t. 5. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1998. – 784 s.
10. A.M. Prohorov. Fizicheskaya enciklopediya, t. 3. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1992. – 672 s.
11. M.E. Putman, L. Staveley-Smith, K.C. Freeman, B.K. Gibson, D.G. Barnes. The Magellanic Stream, High-Velocity Clouds, and the Sculptor Group. The Astrophysical Journal. – 2003. – V. 586. – № 1. – R. 170-194.
12. S.Yu. Poroykov. Vklad zvezd v galo (korone) galaktik v opticheskoe fonovoe kosmicheskoe izluchenie // Zhurnal estestvennonauchnyh issledovaniy. – 2023. – T. 8. – № 3. – S. 2-19.
13. I.S. Grigor'ev, E.Z. Meylihov. Fizicheskie velichiny. Spravochnik. – M.: Energoatomizdat. – 1991. – 1232 s.
14. A. Chiti, A. Fre, et al. An extended halo around an ancient dwarf galaxy // Nature Astronomy. 2021. – V. 5. – P. 392–400.
15. R. Ibata, B. Gibson. The Ghosts of Galaxies Past // Scientific American Magazine. – 2007. – V. 296. – № 4. – P. 40-45.
16. F. Hammer, Y. Yang, F. Arenou, C. Babusiaux, J. Wang, M. Puech, H. Flores. Galactic Forces Rule the Dynamics of Milky Way Dwarf Galaxies // The Astrophysical Journal. – 2018. – V. 860:76. – № 1. – 19 rr.
17. A.V. Tutukov, S.V. Vereschagin, M.D. Sizova. Razrushenie galaktik kak prichina poyavleniya zvezdnyh potokov // Astronomicheskiy zhurnal. – 2021. – T. 98. – № 11. – S. 883-900.
18. D.S.N. Rupke, et al. A 100-kiloparsec wind feeding the circumgalactic medium of a massive compact galaxy // Nature. – 2019. – V. 574. – P. 643–646.
19. A.V. Zasov, K.A. Postnov. Obschaya astrofizika. 2-e izd. ispr. i dopoln. Fryazino: Vek 2. – 2011. – 576 s.
20. H. Lee, B.K. Gibson, C. Flynn, D. Kawata, M.A. Beasley. Is the initial mass function of low surface brightness galaxies dominated by low-mass stars? // Monthly Notices of the Royal Astronomical Society. – 2004. – V. 353. – Is. 1. – R. 113-117.
21. Yi-K. Chiang, R. Makiya, B. Ménard, E. Komatsu. The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography // The Astrophysical Journal. – 2020. – V. 902:56. – № 1. – 12 rr.
22. A. Gil de Paz, S. Boissier, B.F. Madore, M. Seibert, Y.H. Joe, A. Boselli, T.K. Wyder, D. Thilker, L. Bianchi, S.-C. Rey. The GALEX Ultraviolet Atlas of Nearby Galaxies // The Astrophysical Journal Supplement Series. – 2007. – V. 173. – № 2. – P. 185.
23. Á. Bogdán, W.R. Forman, R.P. Kraft, C. Jones. Detection of a luminous hot X-ray corona around the massive spiral galaxy NGC 266 // The Astrophysical Journal. – 2013. – V. 772:98. – № 2. – 5 pp.
24. Á. Bogdán, W.R. Forman, M. Vogelsberger, H. Bourdin, D. Sijacki, P. Mazzotta, R.P. Kraft, C. Jones, M. Gilfanov, E. Churazov. Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models // The Astrophysical Journal. – 2013. – V. 772:97. – № 2. – 18 pp.
25. S. Ammazzalorso, et al. Detection of Cross-Correlation between Gravitational Lensing and γ Rays // Physical Review Letters. – 2020. – V. 124. – Is. 10. – 11 pp.
26. Y. Stein, R.-J. Dettmar, R. Beck, J. Irwin, T. Wiegert, A. Miskolczi, Q. D. Wang, J. English, R. Henriksen, M. Radica, J.-T. Li. Transport processes and the X-shaped magnetic field of NGC 4217: off-center superbubble structure // Astronomy and Astrophysics. – 2020. – V. 639. – A111. – 25 rr.
27. H.C. Woodruff, M. Eberhardt, T. Driebe, K.-H. Hofmann, K. Ohnaka, A. Richichi, D. Schert, M. Schöller, M. Scholz, G. Weigelt, M. Wittkowski, P. R. Wood. Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared // Astronomy and Astrophysics. – 2004. – V. 421. – № 2. – P. 703-714.
28. C. Alcock, et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations // The Astrophysical Journal. – 2000. – V. 542. – № 1. – R. 281-307.