APPROXIMATION OF FREEFORM SURFACES WITH POLYHEDRA COMPOSED OF CONGRUENT TRIANGLES
Abstract and keywords
Abstract (English):
The article presents the structure and stages of implementing a computer geometric modeling program designed to solve a discrete geometry problem: the approximation of free-form surfaces using polyhedra with groups of congruent faces. Solving this problem reduces the costs of physical construction of the specified surface in the form of building facades, particularly in the new architectural trend known as "parametricism." The optimization method utilized in the program enables the creation of geometric models that are valuable in architecture, industrial design, and computer graphics. A key component of the program is a genetic algorithm, one of the evolutionary computation methods. The paper provides a detailed analysis of the genetic algorithm's parameters, including the number of generations, population size, mutation and crossover probabilities. The optimal set of parameters for the program is determined experimentally. Experimental results demonstrate the effectiveness of various algorithm configurations. The findings reveal that the optimization method used minimizes the number of distinct congruent polyhedral faces. The advantages of the method are evaluated within the program’s constraints, as well as its limitations, such as computational complexity and the need for parameter tuning. The conclusion discusses prospects for future research, including enhancing the algorithm's efficiency, developing new approaches for normalizing and discretizing input data, controlling and modifying the topology of the resulting polyhedra, and exploring alternative optimization methods.

Keywords:
computer-aided-geometric design, genetic algorithm, surface approximation, faceted surfaces, architectural freeform skin, optimization
References

1. Agahanov E.K. Primenenie informacionnyh tehnologiy pri modelirovanii ob'ekta parametricheskoy arhitektury [Tekst] / E.K. Agahanov, G.M. Kravchenko, E.V. Trufanova, M.K. Agahanov // Sistemnye tehnologii. — 2023. — № 2. — S. 51–58. — DOI:https://doi.org/10.55287/22275398_2023_2_51

2. Akshov E.A. Ispol'zovanie vychislitel'nogo proektirovaniya i iskusstvennogo intellekta pri modelirovanii arhitekturnyh ob'ektov [Tekst] / E.A. Akshov // Arhitektura i sovremennye informacionnye tehnologii. — 2023. — № 2. — S. 298–315. — DOI:https://doi.org/10.24412/1998-4839-2023-2-298-315

3. Beglov I.A. Poverhnosti kvazivrascheniya i ih primenenie v parametricheskoy arhitekture [Tekst]: dis. … kand. tehn. nauk: 05.01.01 / I.A. Beglov, 2022. — 200 s.

4. Beglov I.A. Formoobrazovanie poverhnostey kvazivrascheniya n-ogo poryadka [Tekst] / I.A. Beglov // Problemy mashinovedeniya: materialy IV Mezhdunarodnoy nauchno-tehnicheskoy konferencii / nauchnyy redaktor P.D. Balakin. — Omsk: Omskiy gosudarstvennyy tehnicheskiy universitet. — 2020. — S. 419–426.

5. Bobenko A.I. Diskretnaya differencial'naya geometriya. Integriruemaya struktura [Tekst] / A.I. Bobenko, Yu.B. Suris. — M. — Izhevsk: Regulyarnaya i haoticheskaya dinamika, Izd-vo Izhevskogo instituta komp'yuternyh issledovaniy, 2010. — 488 s.

6. Kirichkov I.V. Formoobrazuyuschie principy otelya «Morpheus» v Makao [Tekst] / I.V. Kirichkov // Sovremennaya arhitektura mira. — 2022. — № 2. — S. 67–80. DOI:https://doi.org/10.25995/NIITIAG.2022.19.2.003

7. Konovalova N.A. Arhitektura Opernogo teatra v Dubae: celi i kompromissy [Tekst] / N.A. Konovalova // Sovremennaya arhitektura mira. — 2022. — № 1. S. 217–232. — DOI:https://doi.org/10.25995/NIITIAG.2022.18.1.011

8. Kravchenko G.M. Evolyuciya formoobrazovaniya zdaniya parametricheskoy arhitektury s uchetom aerodinamiki [Tekst] / G.M. Kravchenko, E.V. Trufanova, M.V. Poletaev, L.I. Pudanova // Inzhenernyy vestnik Dona. 2021. — № 9. — S. 268–277.

9. Lavrent'ev A.N. Prostranstvennye konstrukcii kak hudozhestvennoe izobretenie. K formirovaniyu abstraktnoy skul'ptury kak samostoyatel'nogo napravleniya [Tekst] / A.N. Lavrent'ev, A.N. Koval'chuk // Dekorativnoe iskusstvo i predmetno-prostranstvennaya sreda. Vestnik RGHPU im. S.G. Stroganova. — 2019. № 2-2. — S. 151–165.

10. Lipkin S.M. Optimizaciya raspolozheniya datchikov v sensornoy seti na osnove geneticheskogo algoritma [Tekst] / S.M. Lipkin, E.S. Mihalin, V.D. Gubiy, A.G. Chipko // Uspehi sovremennoy nauki i obrazovaniya. — 2017. — T. 5. — № 2. — S. 78–81.

11. Lobareva I.F. Ob odnom podhode k optimizacii formy lopasti gidroturbiny [Tekst] / I.F. Lobareva, V.A. Skorospelov, P.A. Turuk, S.G. Chernyy, D.V. Chirkov // Vychislitel'nye tehnologii. — 2005. — T. 10. № 6. — S. 52–74.

12. Mamieva I.A. Analiticheskie poverhnosti dlya parametricheskoy arhitektury v sovremennyh zdaniyah i sooruzheniyah [Tekst] / I.A. Mamieva // Academia. Arhitektura i stroitel'stvo. — 2020. — № 1. — S. 150–165.

13. Panchenko T.V. Geneticheskie algoritmy: uchebno-metodicheskoe posobie [Tekst] / T.V. Panchenko. — Astrahan': Izd-vo Astrahanskogo un-ta, 2007. — 87 s.

14. Popov E.V. Postroenie poverhnosti sudovogo korpusa s ispol'zovaniem geneticheskogo algoritma [Tekst] / E.V. Popov, A.V. Rekshinskiy // Vestnik Izhevskogo gosudarstvennogo tehnicheskogo universiteta. — 2007. № 3. — S. 116–120.

15. Rustamyan V.V. Programma sozdaniya triangulirovannyh poliedrov, grani kotoryh gruppiruyutsya po svoy stvu kongruentnosti treugol'nikov, approksimiruyuschih zamknutye ne samoperesekayuschiesya poverhnosti svobodnoy formy s pomosch'yu geneticheskogo algoritma. Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM RU 2024612472. Zayavka № 2023685692 ot 24.11.2023.

16. Saleh M.S. Vnedrenie cifrovyh metodov na razlichnyh etapah arhitekturnogo proektirovaniya [Tekst] / M.S. Saleh // Arhitektura i sovremennye informacionnye tehnologii. — 2021. — № 1. — S. 268–278. DOI:https://doi.org/10.24412/1998-4839-2021-1-268- 278

17. Saleh M.S. Metodika poiska arhitekturnoy formy putem primeneniya principov geneticheskogo algoritma s pomosch'yu cifrovyh tehnologiy na primere obschestvennogo centra v gorode Istre [Tekst] / M.S. Saleh // Nauka, obrazovanie i eksperimental'noe proektirovanie. Trudy MARHI: Materialy mezhdunarodnoy nauchno-prakticheskoy konferencii, Moskva, 08–12 aprelya 2019 goda. — M.: Izd-vo Moskovskogo arhitekturnogo inta, 2019. — S. 433–436.

18. Saleh M.S. Osnovnye napravleniya razvitiya cifrovyh metodov proektirovaniya v noveyshey arhitekture [Tekst] / M.S. Saleh // Arhitektura i sovremennye informacionnye tehnologii. — 2020. — № 2. S. 351–361. — DOI:https://doi.org/10.24411/1998-4839-2020-15119

19. Strashnov S.V. Komp'yuternoe modelirovanie novyh form stroitel'nyh obolochek [Tekst] / S.V. Strashnov // Geometriya i grafika. — 2022. — T. 10. — № 4. S. 26–34. — DOI:https://doi.org/10.12737/2308-4898-2022-10-4-26-34

20. Beglov I.A. Application of quasi-rotation surface segments in architectural prototyping / I.A. Beglov, V.V. Rustamyan, R.A. Verbitskiy // IOP Conf. Series: Journal of Physics: Conf. Ser. 2182 (2022) 012002. DOI:https://doi.org/10.1088/17426596/2182/1/012002

21. Fu Ch.-W. K-set Tilable Surfaces / Ch-W. Fu, Ch-F. Lai, Y. He, D. Cohen-Or // ACM Trans. Graph. 2010. V. 29. DOI:https://doi.org/10.1145/1833349.1778781

22. Huang J. An accurate method for voxelizing polygon meshes. / J. Huang, R. Yagel, V. Filippov, Y. Kurzion // IEEE Symposium on Volume Visualization. 1998. Pp. 119–126. DOI:https://doi.org/10.1109/SVV.1998.729593

23. Huard M. Planar Panelization with Extreme Repetition /M. Huard, M. Eigensatz, P. Bompas // Advances in Architectural Geometry 2014. 2015. Pp. 259–279. DOI:https://doi.org/10.1007/978-3-319-11418-7_17

24. Jiang C. Interactive Modeling of Architectural Freeform Structures — Combining Geometry with Fabrication and Statics. / C. Jiang, Ch. Tang, M. Tomicic, J. Wallner, H. Pottmann // Conference: Advances in Architectural Geometry 2014. 2014. DOI:https://doi.org/10.1007/978-3-319-11418-7_7

25. Jiménez M. Discretizations of Surfaces with Constant Ratio of Principal Curvatures / M. Jimenez, C. Müller, H. Pottmann // Discrete & Computational Geometry. 2020. V. 63. DOI:https://doi.org/10.1007/s00454-019-00098-7

26. Kirsanov M.N. Installation diagram of the lattice truss with an arbitrary number of panels / M.N. Kirsanov // Maga zine of Civil Engineering. 2018. I. 5. Pp. 174–182. DOI:https://doi.org/10.18720/MCE.81.17

27. Liu Y. Reducing the Number of Different Faces in FreeForm Surface Approximations Through Clustering and Optimization. / Y. Liu, T.-U. Lee, A. Rezaee Javan, N. Pietroni, Y. Xie // Computer-Aided Design. 2023. V. 166. 103633. DOI:https://doi.org/10.1016/j.cad.2023.103633

28. Lobel A. Lobel mashes. URL: https://www.equilatere.net/ frame.php?page=en/fondamentals/families.php (data obrascheniya: 20.05.2024)

29. Lu H. Reducing the number of different members in truss layout optimization / H. Lu, Y. Xie // Structural and Multidisciplinary Optimization. 2023. V. 66. DOI: 10.1007/ s00158-023-03514-y

30. Pavlenko V.V. Architectural Archetypes: From the Harmony of Number to Deconstruction / V.V. Pavlenko, V.S. Sverdlenko, A.V. Sukhoverkhov // Epomen. 2020. No. 40. Pp. 74–83.

31. Singh M. Triangle Surfaces with Discrete Equivalence Classes / M. Singh, S. Schaefer // ACM Trans. Graph. 2010. V. 29(4). DOIhttps://doi.org/10.1145/1833351.1778783.

32. Wang H. Discrete geodesic parallel coordinates / H. Wang, D. Pellis, F. Rist, H. Pottmann, C. Müller // ACM Transactions on Graphics (TOG). 2019. I. 38(6). Pp. 1–13. DOIhttps://doi.org/10.1145/3355089.3356541

Login or Create
* Forgot password?