Voronezh, Russian Federation
Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Decomposable plant mass is the most important link in the system of communication between vegetation and soil. Thus, part of the tree plant organs and ground cover vegetation of the oak forest is constantly dying (leaves, generative organs, branches, bark fragments, etc.). These processes are collectively called plant litter, which is the flow of organic matter from phytomass to mortmass. The aim of this work is to study the characteristics of seasonal plant litterformation in conditions of old age upland oak forest. Field work was conducted on monitoring permanent test sites located on the territory of "FOR&ST CARBON" in Voronezh region. Type of forest - oak, composition of the tree- Quercus Robur L., Tilia Cordata Mill., Acer Platanoides L. The ground cover vegetation of the plantation counts 17 species of plants, with a share of this biogeohorizon in seasonal vegetation is about 16.5%. Due to the high dynamics in the biological cycle, a significant amount of carbon and nitrogen is involved in the grass cover vegetation. When measuring the plant litter of ground cover vegetation in oak forest, it is necessary to take into account the exfoliation in the near trunk and under crown areas, as well as to count the phytomass of ephemeroids, since the vegetative litter of ephemeroids is comparable with the vegetative litter of other grasses. The results of the studies in seasonal plant litter assessment showed that the proportion of rapidly mineralizing leaf fraction ranges from 31.1 to 95.4% and the slowly mineralizing branch fraction does not exceed 10%. Between August and November, 1870.12 kg C/ha were carried with plant litterfall. As expected, maximum is in the autumn period, peak is October, during which in oak forest is laid 1416.4 kg C/ ha, which is 75% of the recorded for the entire period of carbon stock.
plant litter, forest litter, litterfall, ground cover vegetation, carbon, upland oak forest, Central Forest Steppe
1. Lukina N.V., Bartalev A.P., Geras'kina A. P. i dr. Rol' starovozrastnyh lesov v akkumulyacii i hranenii ugleroda. Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya. 2023; 87 (4): 536-557. DOIhttps://doi.org/10.31857/S2587556623040064.
2. Lukina N.V., Geras'kina A.P., Gornov A.V. i dr. Bioraznoobrazie i klimatoreguliruyuschie funkcii lesov: aktual'nye voprosy i perspektivy issledovaniy. Voprosy lesnoy nauki. 2020; 3(4): 1-90. DOIhttps://doi.org/10.31509/2658-607x-2020-3-4-1-90.
3. Mamonov D.N., Morkovina S.S., Matveev S.M. i dr. Sravnitel'naya ocenka metodov ucheta deponirovaniya ugleroda sosnovo-berezovymi lesnymi nasazhdeniyami Voronezhskoy oblasti. Lesotehnicheskiy zhurnal. 2022; 3(47): 4-15. DOIhttps://doi.org/10.34220/issn.2222-7962/2022.3/1.
4. Odnoralov G. A., Tihonova E. N., Golyadkina I. V., Malinina T. A. Ocenka biologicheskoy produktivnosti lesnoy sredy v usloviyah urbanizacii (na primere Voronezhskoy nagornoy dubravy). Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2020; 2(374): 60-72. DOI:https://doi.org/10.37482/0536-1036-2020-2-60-72
5. Odnoralov G. A., Golyadkina I.V., Tihonova E.N. Lesorastitel'nyy potencial zandrovo-vodorazdel'nyh landshaftov Voronezhskoy nagornoy dubravy. Biologicheskoe raznoobrazie i bioresursy stepnoy zony v usloviyah izmenyayuschegosya klimata: Sbornik materialov Mezhdunarodnoy nauchnoy konferencii, posvyaschennoy 95-letiyu Botanicheskogo sada Yuzhnogo federal'nogo universiteta. 2022: 703-708. Rezhim dostupa: https://elibrary.ru/item.asp?id=50159536
6. Odnoralov G. A., Golyadkina I.V., Tihonova E.N. K analizu uglerodnogo sostoyaniya Voronezhskoy nagornoy dubravy. Napravleniya nauchnyh issledovaniy XXI veka: teoriya i praktika. 2020; 1(48):114-119. DOIhttps://doi.org/10.34220/2308-8877-2020-8-1-114-119.
7. Teben'kova D.N., Lukina N.V., Chumachenko S.I. i dr. Mul'tifunkcional'nost' i bioraznoobrazie lesnyh ekosistem. Lesovedenie. 2019; (5): 341-356. DOIhttps://doi.org/10.1134/S0024114819050115.
8. Telesnina V.M., Podvezennaya M.A. Sorokin A.S., Meshalkina Yu.L. Ocenka biomassy hvoyno-listvennyh lesov na primere UOPEC MGU «Chashnikovo». Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie. 2024; (2): 37-45. DOIhttps://doi.org/10.55959/MSU0137-0944-17-2024-79-2-37-45.
9. Ryzhkova G.A., Ryzhkov O.V. Mnogoletnyaya dinamika drevesnogo opada v dubnyake snytevo-krapivnom v urochische solov'yatnik Central'no-Chernozemnogo zapovednika (1963–2017 gody). Materialy mezhregional'noy nauchnoy konferencii, posvyaschennoy 50-letiyu organizacii uchastkov Central'no-Chernozemnogo zapovednika Barkalovka i Bukreevy Barmy. 2019: 147-150. Rezhim dostupa: https://elibrary.ru/item.asp?id=37196756
10. Ryzhova I. M., Podvezennaya N.P., Kirillova N.P. Variabel'nost' zapasov ugleroda v avtomorfnyh i polugidromorfnyh pochvah lesnyh ekosistem evropeyskoy territorii Rossii: sravnitel'nyy statisticheskiy analiz. Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie. 2022; (2): 20-27. Rezhim dostupa: https://elibrary.ru/item.asp?id=48695930
11. Shevchenko N.E., Kuznecova A.I., Teben'kova D.N. i dr. Sukcessionnaya dinamika rastitel'nosti i zapasy pochvennogo ugleroda v hvoyno-shirokolistvennyh lesah Severo-Zapadnogo Kavkaza. Lesovedenie. 2019; (3): 163-176. – DOIhttps://doi.org/10.1134/S0024114819030082.
12. Bhardwaj K.K., Singh M.K., Raj D., Devi S., Dahiya G., Sharma S.K., Sharma M.K. Effect of Tree Leaf Litterfall on available Nutrients and Organic Carbon Pools of Soil. Research Journal of Science and Technology. 2022; 226-232. DOI: https://doi.org/10.52711/2349-2988.2022.00037
13. Mackey B., Moomaw W., Lindenmayer D., Keith H.Net carbon accounting and reporting are a barrier to understanding the mitigation value of forest protection in developed countries. Environmental Research Letters. 2022;17: 054028. DOI:https://doi.org/10.1038/s41559-021-01650-6
14. Feng J., Zhu B., Zhu J., Guo J., Zheng X., Huang K., Jiang L. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology. 2022;10 (28): 3426–3440. DOI: https://doi.org/10.1111/gcb.16107
15. Han M.G., Tang M., Shi B.K., Jin G.Z. Effect of canopy gap size on soil respiration in a mixed Broadleaved-Korean pine forest: Evidence from biotic and abiotic factors. Eur. J. Soil Biol. 2020; 99. DOI:https://doi.org/10.1016/j.ejsobi.2020.103194
16. Hounkpatin K.O.L., Stendahl J., Lundblad M. et al. Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and sitespecific data. SOIL. 2021; 7(2). DOI:https://doi.org/10.5194/soil-7-377-2021
17. Huang L., Zhou M., Ly J., Chen K. Trends in global research in forest carbon sequestration: A bibliometric analysis. Journal of Cleaner Production. 2020;252: 119908. DOI:https://doi.org/10.1016/j.jclepro.2019.119908
18. Huang Y., Yang X., Zhang D., and Zhang J. The effects of gap size and litter species on colonization of soil fauna during litter decomposition in Pinus massoniana plantations. Appl. Soil Ecol. 2020.;155:1-10. DOIhttps://doi.org/10.1016/j.apsoil.2020.103611
19. Qian L., Yan L., Yuliang D., Yongqi X., Kuangji Z., Gang C., Yuqin C., Chuan F. and Xianwei L. Effects of Forest Gaps on the Structure and Diversity of Soil Bacterial Communities in Weeping Cypress Forest Plantations. Frontiers in Microbiology. 2022;8 13:882949. DOIhttps://doi.org/10.3389/fmicb.2022.882949
20. Roeland S., Moretti M., Amorim M. J. B., Ardö J., Barton D. N., Beichler B., Fagerholm N., Haase D., Kowarik I., Lindner G., Grêt-Regamey A. Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. Journal of Forestry Research. 2019; 6 (30): 1981-1996. DOI: https://doi.org/10.1007/s11676-019-00916-x
21. Shu Sh., Zhu W., Wang W. et al. Effects of tree size heterogeneity on carbon sink in old forests. Forest Ecology and Management. 2019;432: 637-648. DOI:https://doi.org/10.1016/j.foreco.2018.09.023
22. Wan X., Zhu J., Zeng D., Jiang L. Functional identity drives tree species richness‐induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist. 2023; 3 (240): 1003–1014. DOI: https://doi.org/10.1111/nph.19216
23. Wilpert K. V. Forest Soils – What's Their Peculiarity? Soil Systems. 2022; 1 (6).: 5. DOI: https://doi.org/10.3390/soilsystems6010005
24. Zhao Y.-Y., Gao J., Huang Y., Bai Y., Jiang Y. Leaf litter decomposition characteristics and controlling factors across two contrasting forest types. Journal of Plant Ecology. 2022;6 (15): 1285–1301. DOI: https://doi.org/10.1093/jpe/rtac073.