FIFTY YEARS OF STUDYING THE GCR INTENSITY DURING INVERSION OF THE HELIOSPHERIC MAGNETIC FIELDS. II. HMF INVERSION ON THE INNER HELIOSPHERIC BOUNDARY
Abstract and keywords
Abstract (English):
Phenomena in the outer layer of the solar atmosphere, the heliosphere, including the supersonic solar wind, the heliospheric magnetic field (HMF) carried by it, and cosmic rays propagating in the heliosphere are important for many processes occurring in this layer. For some of these processes such as geomagnetic activity or propagation of cosmic rays, not only the strength, but also the direction of the field is significant. Nonetheless, if in this regard the situation during periods of low sunspot activity is quite clear — the heliosphere is divided into two hemispheres with opposite polarity (toward the Sun/away from the Sun), — during periods of high sunspot activity when the HMF inversion occurs, there is no simple model of this phenomenon. The paper is a sequel to the study of the HMF inversion phenomenon and associated effects in the intensity of galactic cosmic rays (GCR). Previously, general ideas about the 22-year cyclicity in the characteristics of the Sun, heliosphere, and cosmic rays have been formulated, and the effects observed in the GCR intensity, which we associate with the HMF inversion, have been discussed in detail. This paper deals with a model of HMF inversion, associated only with the evolution of the magnetic field in the layer between the photosphere and the base of the heliosphere due to changes in the distribution of photospheric fields from one solar rotation to the next one, and shows that this is not enough to explain the main effects in the GCR intensity. In this layer, the magnetic field is the main energy factor. A more complete model of HMF inversion, including the transformation of its characteristics due to the interaction of different-speed solar wind streams in the heliosphere itself, where the solar wind is the main energy factor, will be discussed in the next paper.

Keywords:
heliosphere, heliospheric magnetic fields (HMF), inversion of HMF, galactic cosmic rays (GCR), GCR modulation, long-term GCR variations, GCR during HMF inversion
Text
Publication text (PDF): Read Download
References

1. Adriani O., Barbarino G.C., Bazilevskaya G.A., Bellotti R., Boezio M., Bogomolov E.A., et al. (PAMELA collaboration). Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys. J. 2013, vol. 765, p. 91. DOI:https://doi.org/10.1088/0004-637X/765/2/91.

2. Adriani O., Barbarino G.C., Bazilevskaya G.A., Bellott R., Boezio M., Bogomolov E.A., et al. (PAMELA collaboration). Unexpected cyclic behavior in cosmic-ray protons observed by PAMELA at 1 au. Astrophys. J. Lett. 2018, vol. 852, p. L28. DOI:https://doi.org/10.3847/2041-8213/aaa403.

3. Aguilar M., et al. (AMS Collaboration). Observation of complex time structures in the cosmic-ray electron and positron fluxes with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018. vol. 121. 051102. DOI:https://doi.org/10.1103/PhysRevLett.121.051102.

4. Aguilar M., et al. (AMS Collaboration). Periodicities in the daily proton fluxes from 2011 to 2019 measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV. Phys. Rev. Lett.. 2021, vol. 127, 271102. DOI:https://doi.org/10.1103/PhysRevLett.127.271102.

5. Altschuler M.D., Newkirk G. Jr. Magnetic fields and the structure of the solar corona. I. Methods of calculating coronal fields. Solar Phys. 1969, vol. 9, pp. 131–149. DOI: 10.1007/ BF00145734.

6. Aslam O.P.M., Luo Xi, Potgieter M.S., Ngobeni M.D. Song Xiaojian. Unfolding drift effects for cosmic rays over the period of the Sun’s magnetic field reversal. Astrophys. J. 2023, vol. 947, iss. 2, id. 72, 17 p. DOI:https://doi.org/10.3847/1538-4357/ acc24a.

7. Boschini M.J., Della Torre S., Gervasi M., Della Torre S., Gervasi M., La Vacca G., Rancoita P.G. Propagation of cosmic rays in heliosphere: The HELMOD model. Adv. Space Res. 2018, vol. 62, iss. 10, pp. 2859–2879. DOI: 10.1016/ j.asr.2017.04.017.

8. Burger R.A., Moraal H., Webb G.M. Drift theory of charged particles in electric and magnetic fields. Astrophys. Space Sci. 1985, vol. 116, iss. 107.

9. Charbonneau P. Dynamo models of the solar cycle. Living Reviews Solar Physics. 2010, vol. 7, article number 3, p. 3.

10. Gnevyshev M.N. On the 11-year cycle of solar activity. Solar Phys. 1967, vol. 1, pp. 107–120, DOI:https://doi.org/10.1007/BF00150306.

11. Guo X., Florinski V. Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum. J. Geophys. Res.: Space Phys. 2014, vol. 119, iss. 14, pp. 2411–2429. DOI:https://doi.org/10.1002/2013 JA019546.

12. Guo X., Florinski V. Galactic cosmic-ray intensity modula-tion by corotating interaction region stream interfaces at 1 AU. Astrophys. J. 2016, vol. 826:65, no. 1. DOI:https://doi.org/10.3847/0004-637X/826/1/65.

13. Jokipii J.R., Levy E.H., Hubbard W.B. Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 1977, vol. 213, pp. 861–868. DOI:https://doi.org/10.1086/155218.

14. Jokipii J.R., Thomas B. Effect of drift on the transport of cosmic rays. IV. Modulation by a wavy interplanetary current sheet. Astrophys. J. 1981, vol. 243, pp. 1115–1122. DOI: 10.1086/ 158675.

15. Kalinin M.S., Krainev M.B. Two_dimensional transport equation for galactic cosmic rays as a consequence of a reduction of the three_dimensional equation. Geomagnetism and Aeronomy. 2014, vol. 54, no. 4, pp. 423–429. DOI: 10.1134/ S0016793214040045.

16. Kalinin M.S., Krainev M.B., Gvozdevsky B.B., Aslam O.P.M., Ngobeni M.D., Potgieter M.S. On the transition from 3D to 2D transport equations for a study of long-term cosmic-ray intensity variations in the heliosphere PoS ICRC2021. 2021. 1323. DOI:https://doi.org/10.22323/1.395.1323.

17. Kopp A., Raath J.L., Fichtner H., Kühl P., Kopp A., Heber B., Kissmann R. Cosmic-ray transport in heliospheric magnetic structures. III. Implications of solar magnetograms for the drifts of cosmic rays. Astrophys. J. 2021, vol. 922:124. DOI:https://doi.org/10.3847/1538-4357/ac23e0.

18. Krainev M.B. Manifestations of two branches of solar activity in the heliosphere and GCR intensity. Solar-Terr. Phys. 2019, vol. 5, iss. 4, pp. 10–20. DOI:https://doi.org/10.12737/stp-54201902.

19. Krainev M.B., Kalinin M.S., The models of the infinitely thin global heliospheric current sheet. Proceedings of 12th Intern. Solar Wind Conf., Saint-Malo, AIP Conference Proc. 2010, vol. 1216, pp. 371–374.

20. Krainev M.B., Kalinin M.S. On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity. Proceedings of. 33rd International Cosmic Ray Conference. 2014, icrc2013-0317/1-4, ArXiv:1411.7532 [astro-ph.SR].

21. Krainev M., Bazilevskaya G., Kalinin M., Svirzhevskaya A., Svirzhevsky N. GCR intensity during the sunspot maximum phase and the inversion of the heliospheric magnetic field. Proceedings of Science. 2015, PoS (ICRC2015) 081/1-8.

22. Krainev M., Kalinin M., Aslam O.P.M., Ngobeni D., Potgieter M. On the dependence of maximum GCR intensity on heliospheric factors for the last five sunspot minima Adv. Space Res. 2021, vol. 68, iss. 7, pp. 2953–2962. DOI:https://doi.org/10.1016/j.asr. 2021.05.021.

23. Krainev M.B., Kalinin M.S., Bazilevskaya G.A., Svirzhevs-kaya A.K., Svirzhevsky N.S., Xi Luo, Aslam O.P.M., Fang Shen, Ngobeni M.D., Potgieter M.S. Manifestation of solar wind corotating interaction regions in GCR intensity variations. Solar-Terr. Phys. 2023a, vol. 9, iss. 1, pp. 9–20. DOI:https://doi.org/10.12737/stp-91202302.

24. Krainev M.B., Bazilevskaya G.A., Kalinin M.S., Mikhailov V.V., Svirzhevskaya A.K., Svirzhevsky N.S. Fifty years of studying the GCR intensity during inversion of heliospheric magnetic fields I. Observations. Solar-Terr. Phys. 2023b, vol. 9, iss. 4, pp. 3–16. DOI:https://doi.org/10.12737/stp-94202301.

25. Krymskiy G.F. Diffusion mechanism of diurnal cosmic-ray variation. Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy]. 1964, vol. 4, pp. 763–769.

26. Luo X., Feng X., Shen F., Zhang M., Potgieter M. A numerical study of the effects of corotating interaction regions on cosmic-ray transport. Astrophys. J. 2020, vol. 899:90, no. 2. DOI:https://doi.org/10.3847/1538-4357/aba7b5.

27. Odstrcil D. Modeling 3-D solar wind structure. Adv. Space Res. 2003, vol. 32, iss. 4, pp. 497–506. DOI:https://doi.org/10.1016/S0273-1177(03)00332-6.

28. Parker E.N. Cosmic ray modulation by solar wind. Phys. Rev. 1958, vol. 110, p. 1445. DOI:https://doi.org/10.1103/PhysRev.110.1445.

29. Parker E.N. The passage of energetic charged particles through interplanetary space. Planetary and Space Sciences. 1965, vol. 13, pp. 9–49. DOI:https://doi.org/10.1016/0032-0633(65)90131-5.

30. Potgieter M.S. Solar modulation of cosmic rays. Living Revs. Solar Phys. 2013, vol. 10, p. 3. DOI:https://doi.org/10.12942/lrsp-2013-3.

31. Rosenberg R.L., Coleman P. Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field. J. Geophys. Res. 1969, vol. 74, iss. 24, p. 5611. DOI:https://doi.org/10.1029/JA074i024p05611.

32. Schatten K.H. Current sheet magnetic model for the solar corona. Cosmic Electrodymanics. 1971, vol. 2, p. 232.

33. Schatten K.H., Wilcox J.M., Ness F.N. A model of interplanetary and coronal magnetic fields. Solar Phys. 1969, vol. 6, pp. 442–455.

34. Schove D.J. Sunspot cycles, Hutchinson Ross. Publ., Stroudburg, PA, USA. 1983.

35. Sheeley N.R., Jr. Polar faculae during the interval 1906–1975. J. Geophys. Res. 1976, vol. 81, p. 3462. DOI: 10.1029/ JA081i019p03462.

36. Sheeley N.R., Jr. A century of polar faculae variations. Astrophys. J. 2008, vol. 680, pp. 1553–1559. DOI:https://doi.org/10.1086/588251.

37. Shulz M. Interplanetary sector structure and the heliomagnetic equator. Astrophys. Space Sci. 1973, vol. 24, p. 371. DOI:https://doi.org/10.1007/BF02637162.

38. Smith E.J. Solar cycle evolution of the heliospheric magnetic field: The Ulysses legacy. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, iss. 2-3, pp. 277–289. DOI:https://doi.org/10.1016/j.jastp.2010.03.019.

39. Storini M., Bazilevskaya G.A., Fluckiger E.O., Krainev M.B., Makhmutov V.S., Sladkova A.I. The Gnevyshev gap: A review for space weather. Adv. Space Res. 2003, vol. 31, no. 4, pp. 895–900. DOI:https://doi.org/10.1016/S0273-1177(02)00789-5.

40. Stozhkov Yu.I., Okhlopkov V., Makhmutov V., Logachev V. Solar activity, cosmic rays, and global climate changes. Proc. 33rd International Cosmic Ray Conference. 2013. P. 1607.

41. Tóth G., van der Holst B., Sokolov I.V., De Zeeuw D.L., Gombosi T.I., Fang F., Manchester W.B. Adaptive numerical algorithms in space weather modeling. J. Computational Physics. 2012, vol. 231, iss. 3, p. 870903. DOI: 10.1016/ j.jcp.2011.02.006.

42. Vos E.E., Potgieter M.S. New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J. 2015, 815:119. DOI:https://doi.org/10.1088/0004-637X/815/2/119.

43. Wiengarten T., Kleimann J., Fichtner H., Kühl P., Kopp A., Heber B., Kissmann R. Cosmic ray transport in heliospheric magnetic structures. I. Modeling back-ground solar wind using the CRONOS magnetohydrodynamic code. Astrophys. J. 2014, vol. 788:80. DOI:https://doi.org/10.1088/0004-637X/788/1/80.

44. Zhao X., Hoeksema J.T. A coronal magnetic field model with horizontal volume and sheet currents. Solar Phys. 1994, vol. 151, iss. 1, pp. 91–105. DOI:https://doi.org/10.1007/BF00654084.

45. URL: http://wso.stanford.edu (accessed July 7, 2024).

46. URL: http://gong.nso.edu/ (accessed July 7, 2024).

47. URL: http://solarstation.ru/sun-service (accessed July 7, 2024).

48. URL: https://www.gaoran.ru/database/esai (accessed July 7, 2024).

49. URL: https://solarscience.msfc.nasa.gov (accessed July 7, 2024).

50. URL: ftp://ftp.swpc.noaa.gov/pub/forecasts/SRS/ (accessed July 7, 2024).

Login or Create
* Forgot password?