VARIABILITY OF IONOSPHERIC IONIZATION OVER EURASIA ACCORDING TO DATA FROM A HIGH-LATITUDE IONOSONDE CHAIN DURING EXTREME MAGNETIC STORMS IN 2015
Abstract and keywords
Abstract (English):
We have examined longitudinal-temporal variations in ionospheric parameters over Eurasia by analyzing data from a chain of high-latitude ionosondes along a latitude circle ~70° N (geomagnetic latitudes 58°
Keywords:
high-latitude ionosphere; ionosonde chain, geomagnetic storm, variations of ionospheric ionization
Text
Publication text (PDF): Read Download
References

1. Alpatov V.V., Belyaev A.N., Kunitsyn V.E. Tomography methods in research and monitoring of the upper atmosphere and ionosphere. Mir izmerenii [Measurements World]. 2013, no. 2, pp. 31–37. (In Russian).

2. Afraimovich E.L., Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli [GPS Monitoring of the Earth’s Upper Atmosphere]. Irkutsk, 2006, pp. 90–94. (In Russian).

3. Afraimovich E.L., Astafyeva E.I., Demyanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather and Space Climate. 2013, vol. 3, no. A27. DOI:https://doi.org/10.1051/swsc/2013049.

4. Andreeva E.S., Padokhin A.M., Nazarenko M.O., Tumanova Yu.S., Kalashnikova S.A. Tomographic methods for studying the atmosphere and near-Earth space: Current status and development prospects. Trudy XXVII Vserossiiskoi otkrytoi nauchnoi konferentsii “Rasprostranenie radiovoln” [Proc. XXVII National Open Scientific Conference “Radio Wave Propagation”]. Kaliningrad, 2021, pp. 86–98. (In Russian).

5. Buonsanto M.J. Ionospheric storms — a review. Space Sci. Rev. 1999, vol. 88, pp. 563–601.

6. Burešová D., Laštovička J., De Franceschi G. Manifestation of strong geomagnetic storms in the ionosphere above Europe. Space Weather. Springer, 2007, pp. 185–202.

7. Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Ratovskii K.G., Belinskaya A.Yu., Stepanov A.E., et al. Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2019, vol. 16, no. 5, pp. 336–347. DOI:https://doi.org/10.21046/2070-7401-2019-16-5-336-347. (In Russian).

8. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S. Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from the ionosonde and GPS/GLONASS data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2020, vol. 17, no. 4, pp. 269–281. DOI:https://doi.org/10.21046/2070-7401-2020-17-4-269-281. (In Russian).

9. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S., Ratovsky K.G., Belinskaya A.Yu., et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations. Adv. Space Res. 2021, vol. 67, no. 2, pp. 762–776. DOI:https://doi.org/10.1016/j.asr.2020.10.028.

10. Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Ratovsky K.G., Belinskaya A.Yu., Stepanov A.E., Bychkov V.V., Grigorieva S.A., Panchenko V.A., Mielich J. Studying the response of the mid-latitude ionosphere of the Northern Hemisphere to magnetic storms in March 2012. Solar-Terr. Phys. 2022, vol. 8, iss. 4, pp. 44–54. DOI:https://doi.org/10.12737/stp-84202204.

11. Chernigovskaya M.A., Yasyukevich A.S., Khabituev D.S. Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storms in March 2012 from ionosonde and GPS/GLONASS data. Solar-Terr. Phys. 2023, vol. 9, iss. 4, pp. 99–110. DOI:https://doi.org/10.12737/stp-94202313.

12. Chernigovskaya M.A., Ratovsky K.G., Setov A.G., Khabituev D.S., Kalishin A.S., Stepanov A.E., et al. Ionospheric response over the high and middle latitude regions of Eurasia according to ionosonde data during the severe magnetic storm in March 2015. Solar-Terr. Phys. 2024, vol. 10. (In print).

13. Cherniak I., Krankowski A., Zakharenkova I. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 2014, vol. 49, no. 8, pp. 653–662. DOI:https://doi.org/10.1002/2014RS005433.

14. Chernyshov A.A., Chugunin D.V., Mogilevskii M.M., Moiseenko I.L., Kostrov A.V., Gushchin M.E., et al. Studying the inhomogeneous structure of the ionosphere using simultaneous measurements by CubeSat nanosatellites. Izv. vuzov. Priborostroenie [J. Instrument Engineering]. 2016, vol. 59, no. 6, pp. 443-449. DOI:https://doi.org/10.17586/0021-3454-2016-59-6-443-449. (In Russian).

15. Deminov M.G. Electromagnetic and plasma processes from the interior of the Sun to the interior of the Earth. Yubileinyi sbornik IZMIRAN-75 [Anniversary Collection IZMIRAN-75]. Moscow, 2015, pp. 295–346. (In Russian).

16. Deminov M.G., Shubin V.N. Empirical model of the location of the main ionospheric trough. Geomagnetism and Aeronomy. 2018, vol. 58, no. 3, pp. 348–355. DOI:https://doi.org/10.1134/S0016793218030064.

17. Enell C.-F., Kozlovsky A., Turunen T., Ulich T., Välitalo S., Scotto C., Pezzopane M. Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms. Geoscientific Instrumentation, Methods and Data Systems. 2016, no. 5, pp. 53–64. DOI:https://doi.org/10.5194/gi-5-53-2016.

18. Huang X., Reinisch B.W. Vertical electron density profiles from digisonde ionograms. The average representative profile. Annali di Geofisica. 1996, vol. XXXIX, no. 4, pp. 751–756.

19. Hunsucker R.D., Hargreaves J.K. The High-Latitude Ionosphere and Its Effects on Radio Propagation. Cambridge University Press, New York, 2003, 617 p.

20. Jakowski N. Radio occultation techniques for probing the ionosphere. The Radio Science Bull. 2005, no 314, pp. 4–15.

21. Kalishin A.S., Blagoveshchenskaya N.F., Troshichev O.A., Frank-Kamenetskii A.V. AARI: Geophysical Research in High Latitudes. Polyarnye issledovaniya [Polar Investigations]. 2020, no. 3-4 (107-108), pp. 60–74. DOI:https://doi.org/10.22204/2410-4639-2020-106-107-3-4-60-78. (In Russian).

22. Karpachev A.T. Dynamics of main and ring ionospheric troughs at the recovery phase of storms/substorms. J. Geophys. Res. 2021, no. 126, e2020JA028079. DOI:https://doi.org/10.1029/2020JA028079.

23. Karpachev A.T., Klimenko M.V., Klimenko V.V. Longitudinal variations of the ionospheric trough position. Adv. Space Res. 2019, vol. 63, iss. 2, pp. 950–966. DOI:https://doi.org/10.1016/j.asr.2018.09.038.

24. Klimenko M.V., Klimenko V.V., Despirak I.V., Zakharenkova I.E., Kozelov B.V., Cherniakov S.M., et al. Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30° E longitude during the St. Patrick's Day geomagnetic storm on 17–23 March 2015. J. Atmos. Solar-Terr. Phys. 2018, vol. 180, pp. 78–92. DOI:https://doi.org/10.1016/j.jastp.2017.12.017.

25. Kozlovsky A., Turunen T., Ulich T. Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere. J. Geophys. Res. 2013, vol. 118, pp. 5265–5276.

26. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera [Ionosphere and Plasmasphere]. Moscow, Nauka Publ., 1984, 188 p. (In Russian).

27. Kunitsyn V.E., Padokhin A.M., Kurbatov G.A., Yasyukevich Yu.V., Morozov Yu.V. Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions. 2016, vol. 20, pp. 877–884. DOI:https://doi.org/10.1007/s10291-015-0500-2.

28. Loewe C.A., Prölss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol.102, no. A7, pp. 14,209–14,213.

29. MacDougall J.W., Grant I.F., Shen X. The Canadian advanced digital ionosonde: design and results. WDC A for Solar-Terrestrial Physics, Report UAG-104. Boulder, Colorado, USA, 1995, pp. 21–27.

30. Mamrukov A.P., Khalipov V.L., Filippov L.D., Stepanov A.E., Zikrach E.K., Smirnov V.F., Shestakova L.V. Geophysical information on oblique radio reflections at high latitudes and their classification. Issledovaniya po geomagnetizmu, aehronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 2000, vol. 111, pp. 14–27. (In Russian).

31. Matsushita S. A study of the morphology of ionospheric storms. J. Geophys. Res. 1959, vol. 64, no. 3, pp. 305–321. DOI:https://doi.org/10.1029/JZ064i003p00305.

32. Mikhailov A.V. Ionospheric F2-layer storms. Física de la Tierra. 2000, vol. 12, pp. 223–262.

33. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., et al. Global model of the thermosphere-ionosphere-protonosphere system. Pure and Applied Geophysics. 1988, vol. 127, no. 2-3, pp. 219–254.

34. Perevalova N.P., Romanova E.B., Tashchilin A.V. Detection of high-latitude ionospheric structures using GNSS. J. Atmos. Solar-Terr Phys. 2020, vol. 207, 105335. DOI:https://doi.org/10.1016/j.jastp.2020.105335.

35. Polyakov V.M., Shchepkin L.A., Kazimirovsky E.S., Kokourov V.D. Ionosfernye protsessy [Ionospheric Processes]. Novosibirsk, Nauka Publ., 1968, 535 p. (In Russian).

36. Ratovsky K.G., Oinats A.V., Medvedev A.V. Regular features of the polar ionosphere characteristics from digisonde measurements over Norilsk. Adv. Space Res. 2013, vol. 51, pp. 545–553. DOI:https://doi.org/10.1016/j.asr.2011.09.026.

37. Stepanov A.E., Khalipov V.L., Golikov I.A., Bondar' E.D. Polyarizatsionnyi dzhet: uzkie i bystrye dreify subavroral'noi ionosfernoi plazmy [Polarization jet: narrow and fast drifts of subauroral ionospheric plasma]. Yakutsk, SVFU Publ., 2017, 176 p. (In Russian).

38. Themens D.R., Jayachandran P.T., Galkin I., Hall C. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2 and hmF2. J. Geophys. Res. Space Phys. 2017, vol. 122, pp. 9015–9031. DOI:https://doi.org/10.1002/2017JA024398.

39. Troshichev O.A., Sormakov D.A. PC index as a proxy of the solar wind energy that entered into the magnetosphere: 3. Development of magnetic storms. J. Atmos. Solar-Terr. Phys. 2018, vol. 180. DOI:https://doi.org/10.1016/j.jastp.2017.10.012.

40. Tumanova Yu.S., Andreeva E.S., Nesterov I.A. Observations of an ionospheric trough over Europe at different levels of geomagnetic disturbance based on radio tomography data. Uchenye zapiski fizicheskogo fakulteta Moskovskogo universiteta [Moscow University Physics Bulletin]. 2016, no. 3, p. 163906. (In Russian).

41. Vystavnoi V.M., Makarova L.N., Shirochkov A.V., Egorova L.V. Research of the high-latitude ionosphere by vertical sounding using a modern digital ionosonde CADI. Geliogeofizicheskie issledovaniya [Heliogeophysical Res.] 2013, vol. 4, pp. 1–10. (In Russian).

42. URL: http://wdc.kugi.kyoto-u.ac.jp (accessed December 20, 2023).

43. URL: https://www.ngdc.noaa.gov (accessed January 15, 2024).

44. URL: https://www.swpc.noaa.gov/noaa-scales-explanation (accessed January 15, 2023).

45. URL: www.solen.info/solar/old_reports (accessed December 20, 2023).

46. URL: https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (accessed December 20, 2023).

47. URL: http://www.wdcb.ru/stp/geomag/geomagn_PC_ind.ru.html (accessed December 20, 2023).

48. URL: https://www.ukssdc.ac.uk/wdcc1/iono_menu.html (accessed December 20, 2023).

49. URL: http://icenter.izmiran.ru/f-h_db.php (accessed November 23, 2023).

50. URL: http://guvitimed.jhuapl.edu/guvi-galleryl3on2 (accessed February 5, 2024).

51. URL: https://www.ukssdc.ac.uk (accessed December 20, 2023).

Login or Create
* Forgot password?