UDK 517.968 Интегральные уравнения
Despite the significant results achieved in the study of operator equations (including Volterra equations) in normalized Banach spaces, fundamental research in this field of mathematics attracts the attention of a huge number of mathematicians around the world. The solutions of the Volterra equation describe many important processes in various fields of science and technology. Studies of various inverse problems, experimental or experimental data processing problems related to the study of spherical or axisymmetric plasma formations, numerous mathematical models of the existence of various biological systems lead to the consideration and solution of this type of integral equations. A great contribution to the development of this theory was made by N.A. Magnitsky, L.I. Panov, A.N. Tikhonov, M.M. Lavrentiev and others. Fundamental results were obtained in the study of multiple operator equations with singularities in various functional spaces. Solutions depending on many parameters were constructed for the above equations. Currently, such problems are considered in spaces of arbitrary dimension and with coefficients having a derivative of finite order. In this paper, a finite set of solutions in a certain functional space is constructed for an integral equation of the first kind. The kernel of the integral operator has a finite order and is sufficiently differentiable near zero. The integral equation under consideration is reduced to an integro-differential equation representing two terms. For the first term, it is possible to solve the corresponding inhomogeneous equation and obtain a set of solutions in some functional normalized space. For the second term, we obtain an equation with an operator whose norm in some operator space is arbitrarily small near zero. Such splitting of the integral operator makes it possible to construct a partial and general solution of the corresponding integro-differential equation in the form of convergent equations. Applying modern methods of functional analysis, it is possible, by studying two separate equations, to construct a multiparametric family of solutions with values in some Banach space with weight for the original equation under consideration.
Resolving operator, operator spectrum, norm, kernel, Banach space
1. Magnickiy, N.A. O suschestvovanii mnogoparametricheskih semeystv resheniy integral'nogo uravneniya Vol'terra I-go roda / N.A. Magnickiy // DAN SSSR. - 1977. - T. 235, № 4. - C. 772-774.
2. Magnickiy, N.A. Mnogoparametricheskie semeystva resheniy integral'nyh uravneniy Vol'terra / N.A. Magnickiy // DAN SSSR. - 1978. - T. 240, № 2. - C. 268-271.
3. Magnickiy, N.A. Lineynye integral'nye uravneniya Vol'terra I i III roda / N.A. Magnickiy // Zhurnal vych. mat. i mat. fiz. - 1979. - T. 19, № 4. - C. 970-988.
4. Kreyn, S.G. O polnote sistemy resheniy integral'nogo uravneniya Vol'terra s osobennost'yu / S.G. Kreyn, I.V. Sapronov //Dokl. RAN. - 1997. - T. 355, № 4. - C. 450-452.
5. Kreyn, S.G. Ob integral'nyh uravneniyah Vol'terra s osobennostyami / S.G. Kreyn, I.V. Sapronov // UMN. - 1995. - T. 50, № 4. - C. 140.
6. Krein, S.G. Singular integral Volterra equations / S.G. Krein // Abstracts. International Congress of Mathematics. - 1994. - № 3-11. - P. 125.
7. Krein, S.G. One class of solutions of Volterra equation with regular singularity / S.G. Krein, I.V. Sapronov // Ukr. mat. zh. - 1997. - T. 49, № 3. - S. 424-432.
8. Sapronov, I.V. Ob odnom klasse resheniy uravneniya Vol'terra II roda s regulyarnoy osobennost'yu v banahovom prostranstve / I.V. Sapronov // Izvestiya vysshih uchebnyh zavedeniy. Matematika. - 2004. - № 6. - S. 48-58.
9. Sapronov, I.V. Mnogoparametricheskoe semeystvo resheniy integral'nogo uravneniya Vol'terra s osobennost'yu v banahovom prostranstve / I.V. Sapronov // Izvestiya vysshih uchebnyh zavedeniy. Matematika. - 2005. - № 2. - S. 81-83.
10. Sapronov, I.V. Uravnenie Vol'terra s osobennost'yu v banahovom prostranstve / I.V. Sapronov // Izvestiya vysshih uchebnyh zavedeniy. Matematika. - 2007. - № 11. - S. 45-55.
11. Sapronov, I.V. Mnogoparametricheskoe semeystvo resheniy integral'nogo uravneniya Vol'terra s osobennost'yu v banahovom prostranstve / I.V. Sapronov // Izvestiya vysshih uchebnyh zavedeniy. Matematika. - 2011. - № 1. - S. 59-71.
12. Glushko, V.P. Lineynye vyrozhdayuschiesya differencial'nye uravneniya / V.P. Glushko. - Voronezh, VGU. - 1972.
13. Sapronov, I.V. Lineynoe integral'noe uravnenie Vol'terra I roda / I.V. Sapronov // Vestnik VGU. Seriya: Fizika. Matematika. - 2022. - № 1. - S. 87-96.
14. Panov, L.I. Ob integral'nyh uravneniyah s yadrami, imeyuschimi neintegriruemuyu osobennost' proizvol'nogo poryadka / L.I. Panov // DAN Tadzhikskoy SSR. - 1967. - T. 10, № 6. - S. 3-7.
15. Tihonov, A.N. O reshenii nekorrektno postavlennyh zadach i metode regulyarizacii / A.N. Tihonov // DAN SSSR. - 1963. - T. 151, № 3. - S. 501-504.
16. Tihonov, A.N. O regulyarizacii nekorrektno postavlennyh / A.N. Tihonov // DAN SSSR. - 1963. -T. 153, № 1. - S. 49-52.
17. Lavrent'ev, M.M. O nekotoryh nekorrektnyh zadachah matematicheskoy fiziki / M.M. Lavrent'ev. - Novosibirsk, SO AN SSSR, 1962.
18. Lavrent'ev, M.M. Obratnye zadachi. V trudah vsesoyuznoy shkoly molodyh uchenyh po nekorrektnym zadacham / M.M. Lavrent'ev. - M. % Iz-vo MGU, 1974.
19. Ivanov, V.K. Ob integral'nyh uravneniyah Fredgol'ma pervogo roda / V.K. Ivanov // Differenc. Uravneniya. - 1967. - T. 3, № 3. - S. 410-421.
20. Arsenin, V.Ya. O reshenii nekotoryh integral'nyh uravneniy I-go roda tipa svertki metodom regulyarizacii / V.Ya. Arsenin, V.V. Ivanov // ZhVM i MF. - 1968. - T. 8, № 2. - S. 310-321.
21. Korkina, L.F. O regulyarizacii integral'nyh uravneniy pervogo roda s yadrom Grina / L.F. Korkina // Izv. vyssh. uchebnyh zavedeniy. Matematika. - 1968. - № 5. - S. 44-49.
22. Vol'terra, V. Matematicheskaya teoriya bor'by za suschestvovanie / V. Vol'terra. - M.: «Nauka», 1976.
23. Denisov, A.M. Ob approksimacii kvaziresheniy integral'nogo uravneniya Fredgol'ma I roda special'nogo vida / A.M. Denisov // ZhVM i MF. - 1972. - T. 12, № 8. - S. 1565-1568.
24. Denisov, A.M. O priblizhennom reshenii uravneniya Vol'terra I roda / A.M. Denisov // ZhVM i MF. - 1975. - T. 15, № 4. - S. 1053-1056.
25. Sergeev, V.O. Regulyarizaciya uravneniya Vol'terra I-go roda / V.O. Sergeev // DAN SSSR. - 1971. - T. 197, № 3. - S. 531-534.
26. Aparcin, A.S. Priblizhennoe reshenie integral'nyh uravneniy Vol'terra I roda metodom kvadratnyh summ / A.S. Aparcin, A.B. Bakushinskiy // Differencial'nye i integral'nye uravneniya : sbornik nauchnyh trudov. - Irkutsk, 1972.
27. Kalitvin, A.S. Prilozheniya lineynyh uravneniy Vol'terra i Vol'terra-Fredgol'ma s chastnymi integralami / A.S. Kalitvin // Covremennye metody teorii kraevyh zadach : sbornik materialov Mezhdunarodnoy konferencii Voronezhskaya vesennyaya matematicheskaya shkola Pontryaginskie chteniya - XXX. - Voronezh, 2019. - S. 150-153.
28. Ashabov, S.N. Integral'noe uravnenie Vol'terra so stepennoy nelineynost'yu / S.N. Ashabov // Chebyshevskiy sbornik. - 2022. - T. 23, № 5 (86). - S. 6-19.
29. Andreev, A.S. Metod funkcionalov Lyapunova v zadache ob ustoychivosti integro-differencial'nyh uravneniy Vol'terra s beskonechnym zapazdyvaniem / A.S. Andreev, O.A. Peregudova // Prikladnaya matematika i mehanika. - 2021. - T. 85, № 4. - S. 469-493.
30. Kovalenko, V.O. Operatory Vol'terra i Gel'fonda-Leont'eva na vesovyh banahovyh prostranstvah / V.O. Kovalenko // Matematicheskiy forum (Itogi nauki. Yug Rossii). - 2020. - T. 13. - S. 286-287.
31. Botoroeva, M.N. Issledovanie ustoychivosti neklassicheskih raznostnyh shem dlya nelineynyh integral'nyh uravneniy Vol'terra II roda / M.N. Botoroeva, M.V. Bulatov // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. - 2023. - T. 63, № 6. - S. 881-890.
32. Ilolov, M.I. Drobnye lineynye integro-differencial'nye uravneniya Vol'terra v banahovyh prostranstvah. Itogi nauki i tehniki / M.I. Ilolov // Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory. - 2019. - T. 173. - S. 58-64.
33. lomovoy, V.I. Identification nonlinear dynamic systems based on Volterra polynomials with using polyharmonic test signals / V.I. lomovoy, V.D. Pavlenko // Vestnik Nacional'nogo tehnicheskogo universiteta Har'kovskiy politehnicheskiy institut. Seriya: Informatika i modelirovanie. - 2019. - № 13 (1338). - S. 74-84.
34. Unhaley, S. On existence and uniqueness results for iterative fractional integrodifferential equation with deviating arguments / S. Unhaley, S. Kendre // Applied Mathematics E-Notes. - 2019. - T. 19. - S. 116-127.
35. Hamoud, A. Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations / A. Hamoud // Advances in the Theory of Nonlinear Analysis and its Application. - 2020. - T. 4, no.4. - S. 321-331.
36. Hamoud, A. Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations / A. Hamoud, K. Ghadle // J. Appl. Comput. Mech. - 2019. - T. 5, no. 1. - S. 58-69.