DEVELOPMENT OF A MATHEMATICAL MODEL FOR OPTIMIZING THE PROCESS OF TRAINING CADETS OF LAW ENFORCEMENT AGENCIES IN HIGHER EDUCATIONAL INSTITUTIONS AS A COMPLEX SYSTEM
Abstract and keywords
Abstract (English):
This article discusses the problem of developing a mathematical model to describe the process of training cadets of law enforcement agencies in higher educational institutions, which are a complex system. Currently, reality places high demands on the qualifications and personal qualities of law enforcement officers, which in turn requires the relevant educational organizations to carry out advanced professional training of specialists. The functioning of higher educational institutions of law enforcement agencies is influenced by objective and subjective factors. To this end, in order to increase the efficiency of managerial decision-making in the process of training cadets of law enforcement agencies in higher educational institutions, it is proposed to use a mathematical model of training and education of a group of cadets, developed on the basis of the method of operations research, specifically the theory of Markov random processes that occur during continuously changing time and use discrete states of the system. The mathematical model of training and education of a group of cadets in its functioning uses streams of events that have the properties of stationarity and ordinariness. The process of transition from one state to another is described in the form of a marked graph of states with a transition probability density. Setting the intensity of the event flows will allow you to find the limiting probabilities and predict the states in which the study group is located. This approach will reduce the level of subjectivity of university staff and will allow structuring and optimizing the process of assessing the level of knowledge of cadets.

Keywords:
Complex organizational systems, management decision-making, operations research method, Markov process theory, exponential distribution law, Kolmogorov equations.
References

1. Levina, S.Sh. Upravlencheskie resheniya: monografiya / S.Sh. Levina, R.Yu. Turchaeva. - M.: Feniks, 2019. - 224 c.

2. Yukaeva, V.S. Prinyatie upravlencheskih resheniy / V.S. Yukaeva, E.V. Zubareva, V.V. Chuvikova. - M.: Dashkov i Ko, 2019. - 324 c.

3. Osnovy upravleniya v pravoohranitel'nyh organah: uchebnoe posobie / V.P. Balan, A.V. Dushkin, V.I. Novosel'cev, V.I. Sumin. - Voronezh : Nauchnaya kniga, 2021. - 100 s.

4. Sumin, V.I. Analiz processa optimizacii formirovaniya ierarhicheskih mnogourovnevyh slozhnyh organizacionnyh sistem / V.I. Sumin, T.E. Smolenceva // Vestnik Voronezhskogo instituta FSIN Rossii. -2020. - № 2. - S. 139-144.

5. Analiz funkcionirovaniya i strukturnaya dekompoziciya informacionnyh sistem special'nogo naznacheniya / V.I. Sumin, T.E. Smolenceva, Yu.Yu. Gromov, V.M. Tyutyunnik // Nauchno-tehnicheskaya informaciya. Seriya 2: Informacionnye processy i sistemy. - 2021. - №8. - S. 5-14.

6. Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. - 2020. - T. 13, №1 - S. 32-39.

7. Sumin, V.I. Razrabotka modeley i algoritmov informacionnyh struktur i processov ob'ektov osoboy vazhnosti / V.I. Sumin, D.Yu. Churakov, E.G. Car'kova // Promyshlennye ASU i kontrollery. - 2019. - № 4. - S. 30-39.

8. Matematicheskoe modelirovanie v zadache o vybore optimal'nogo mesta sluzhby dlya voennosluzhaschego / Yu.V. Korypaeva, L.D. Kuznecova, V.I. Sumin, D.B. Desyatov // Vestnik Voronezhskogo instituta FSIN Rossii. - 2022. - № 4. - S. 107-112.

9. Rodin S.V. Modelirovanie sistem zaschity informacii v informacionnyh sistemah vnevedomstvennoy ohrany : special'nost' 05.13.18 - Matematicheskoe modelirovanie, chislennye metody i kompleksy programm, 05.13.19 - Metody i sistemy zaschity informacii, informacionnaya bezopasnost': avtoref. dis. … kand. tehn. nauk / Rodin Sergey Vladimirovich. - Voronezh, 2009. - 17 s.

10. Matematicheskaya model' lokal'noy politiki bezopasnosti s uchetom strukturnyh osobennostey avtomatizirovannoy informacionnoy sistemy informacionnogo centra / V.I. Sumin, A.V. Dushkin, S.V. Rodin, M.A. Zhukova // Matematicheskie metody i informacionno-tehnicheskie sredstva : sbornik materialov IX Vserossiyskoy nauchno-prakticheskoy konferencii. - Krasnodar, 2013. - S. 305-307.

11. Sumin, V.I. Optimizaciya funkcionirovaniya informacionnyh sistem special'nogo naznacheniya / V.I. Sumin, Yu.Yu. Gromov, V.M. Tyutyunnik // Nauchno-tehnicheskaya informaciya. Seriya 2: Informacionnye processy i sistemy. - 2023. - № 5. - S. 1-6. - DOI:https://doi.org/10.36535/0548-0027-2023-05-1.

12. Razrabotka logiko-matematicheskih modeley prinyatiya upravlencheskih modeley v slozhnyh organizacionnyh sistemah special'nogo naznacheniya / V.I. Sumin, A.V. Mel'nikov, V.I. Anciferova, S.A. Sazonova // Modelirovanie sistem i processov. - 2023. - T. 16, № 1. - S. 26-34. - DOI:https://doi.org/10.12737/2219-0767-2023-16-1-26-34.

13. Kozlov, V.V. On synergy of totally connected flows on chainmails / V.V. Kozlov, A.P. Buslaev, A.G. Tatashev // Proceeding of International Conference of CMMSE. - 2013. - Vol. 3. - Pp. 861-874.

14. Kozlov, V.V. Monotonic walks on a necklace and a coloured dynamic vector / V.V. Kozlov, A.P. Buslaev, A.G. Tatashev // International Journal of Computer Mathematics. - 2015. - Vol. 92, Is. 9. - Pp. 1910-1920. - DOI:https://doi.org/10.1080/00207160.2014.915964.

15. Tatashev, A. Spectrum of Elementary Cellular Automata and Closed Chains of Contours / A. Tatashev, M. Yashina // Machines. - 2019. - Vol. 7. - S. 28.

16. Solving linear Fredholm fuzzy integral equations systems by Taylor expansion method / A. Jafarian, S. Measoomy Nia, S. Tavan, M. Banifazel // Applied mathematical sciences. - 2012. - Vol. 6, № 83. - Pp. 4103-4117.

17. Yazenin, A.V. On the problem of possibilistic optimization / A.V. Yazenin // Fuzzy Sets and Systems. - 1996. - Vol. 81. - Pp. 131-140.

18. Altman, E. TCP in Presence of Bursty Losses / E. Altman, K. Avrachenkov, C. Barakat // Performance Evaluation. - 2000. - Vol. 42. - Pp. 129-147.

19. BBR: Congestion-Based Congestion Control / N. Cardwell, Y. Cheng, C.S. Gunn [et al.] // ACM Queue. - 2016. - Vol. 14, № 5. - Pp. 20-53.

20. Fluid Flow Approximation of Time-Limited TCP/UDP/XCP Streams / J. Domanska, A. Domanski, T. Czachorski, J. Klamka // Bulletin of the Polish Academy of Sciences. Technical Sciences. - 2014. - Vol. 62, № 2. - Pp. 217-225.

21. Fluid Flow Approximation of Time-Limited TCP/UDP/XCP Streams / J. Domanska, A. Domanski, T. Czachorski, J. Klamka // Bulletin of the Polish Academy of Sciences. Technical Sciences. - 2014. - V. 62, № 2. - Pp. 217-225.

22. Habachi, O. Stackelberg Model for Opportunistic Sensing in Cognitive Radio Networks / O. Habachi, R. El-Azouzi, Y.A. Hayel // IEEE Transactions on Wireless Communications. - 2013. - Vol. 12. № 5. - Pp. 2148-2159.

23. The system for operational monitoring and analytics of industry cyber-physical systems security in fuel and energy domains based on anomaly detection and prediction methods / N.V. Nashivochnikov, A.A. Bolshakov, A.A. Lukashin, M. Popov // Cyber-Physical Systems: Industry 4.0 Challenges. Studies in Systems, Decision and Control - Cham: Springer Nature Switzerland AG. - 2020. - Vol. 260. - Pp. 277-288.

24. Podvalny, S.L. Modelling and analysing the dynamic interaction between competing branches of the regional economy as a multiagent control system / S.L. Podvalny, N.V. Minakova, E.M. Vasiljev // IEEE Conference Proceedings: 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA-2019). - 2020. - Pp. 169-174.

25. Podvalny, S.L. Intensification of heat transfer in chaotic modes / S.L. Podvalny, E.M. Vasiljev // IOP Conference Series: Materials Science and Engineering, The II "International Theoretical and Practical Conference on Alternative and Smart Energy" (TPCASE 2020). - 2020. - Vol. 1035, 012046. - S. 7.

26. Nixon, M.S. Distance, classification and learning / M.S. Nixon, A.S. Aguado // Feature Extraction and Image Processing for Computer Vision. - London: Academic Press, Elsevier Ltd. - 2020. - Pp. 571-604.

27. Deep neural networks application in models with complex technological objects / V. Meshalkin, A. Puchkov, M. Dli, Y. Lobaneva // Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision and Control. - Cham: Springer Nature Switzerland AG. - 2020. - Vol. 259. - Pp. 291-300.

28. Lacey, S. Visuo-haptic object perception / S. Lacey, K. Sathian // Multisensory Perception. - London: Academic Press, Elsevier Ltd. - 2020. - Pp. 157-178.

29. Barker, G.R.I. Multi-level analyses of associative recognition memory: the whole is greater than the sum of its parts / G.R.I. Barker, E.C. Warburton // Current Opinion in Behavioral Sciences. - 2020. - Vol. 32. - Pp. 80-87.

30. Saymon, D. Algoritmy evolyucionnoy optimizacii / D. Saymon. - M.: DMK Press, 2020. - 940 s.

Login or Create
* Forgot password?