Computer simulation of the recuperative crank mechanism for turning the column of the manipulator of a timber road train
Abstract and keywords
Abstract (English):
The study is aimed at improving the efficiency of the hydraulic manipulators of timber-carrying road trains operating in difficult natural and climatic conditions. The relevance of the scientific direction is substantiated, aimed at reducing energy losses in the hydraulic drives of manipulators in the process of performing loading and unloading operations. The works of foreign scientists are analyzed, which made it possible to identify promising areas for improving the efficiency of hydraulic manipulators, including the development of more modern drives, increasing productivity, accuracy and automation of their control processes. In order to improve the energy efficiency, performance and reliability of hydraulic manipulators of timber road trains, the authors proposed a promising design of the column slewing mechanism with a crank drive. The study was based on mathematical and simulation modeling, numerical methods, as well as modern methods for obtaining and processing information with computer support. A mathematical model and a computer program for the operation of a hydraulic manipulator with a regenerative crank drive of the column slewing mechanism made it possible to estimate the recuperated energy and the swing amplitude of the transported load. When using a hydraulic manipulator equipped with the proposed crank drive, the boom length of which is on average 6 m, and the weight of the transported timber is 600 kg, the amount of energy that can be stored in the pneumohydraulic accumulator is about 1300 J. The angular unevenness of the crank drive is 23.6 % and 4.6 % when assessed in terms of recuperated energy and load swing amplitude, respectively. For a typical hydraulic manipulator with a boom length of 6 m, when braking the rotation of the column, the recuperation system allows to store from 0.39 to 2.59 kW with a load mass of 200 to 1400 kg, respectively, with an acceptable load swing amplitude, respectively, from 0.2 to 0.48 m. The obtained results will be used as recommendations for the purpose of finalizing the proposed crank drive of the rotary device of the hydraulic manipulator at the stage of its design.

Keywords:
timber road train, hydraulic manipulator, energy recovery of the working fluid, crank drive for turning the column, loading and unloading timber, turning mechanism, pneumohydraulic accumulator, mathematical modeling, efficiency, energy losses
Text
Text (PDF): Read Download
References

1. Vliyanie rezhimov dvizheniya lesovoznogo avtopoezda pri vyvozke lesomaterialov na effektivnost' rekuperacii energii v pnevmogidravlicheskom sedel'no-scepnom ustroystve / V. I. Posmet'ev, V. A. Zelikov, V. O. Nikonov, V. V. Posmet'ev, A. S. Chuykov, A. V. Avdyuhin // Lesotehnicheskiy zhurnal. - 2022. - T. 12. - № 4 (48). - S. 114-129. - Bibliogr.: s. 125-128 (20 nazv.). - DOI: https://doi.org/10.34220/issn.2222-7962/2022.4/8.

2. Posmet'ev, V. I. O vliyanii tradicionnyh konstrukciy gidromanipulyatorov na effektivnost' lesovoznogo avtomobil'nogo transporta / V. I. Posmet'ev, V. O. Nikonov // Materialy Vserossiyskoy nauchno-tehnicheskoy konferencii «Problemy ekspluatacii avtomobil'nogo transporta i puti ih resheniya na osnove perspektivnyh tehnologiy i nauchno-tehnicheskih resheniy», 2022. - S. 24-31. - Bibliogr. : s. 30-31 (9 nazv.). - DOI: http://doi.org/10.58168/PRTOW2022_24-31

3. Energy efficiency improvement of heavy-load mobile hydraulic manipulator with electronically tunable operating modes / R. Ding, J. Zhang, B. Xu, M. Cheng, M. Pan // Energy Conversion and Management, Vol. 188, 15 May 2019, Pp. 447-461. - Bibliogr. : pp. 460-461 (31 titles). - DOI: https://doi.org/10.1016/j.anconman.2019.03.023 (SNIP 2,369)

4. Nurmi J. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators : Experimental Results for a Forestry Manipulator / J. Nurmi, J. Mattila // Energies 2017, 10(5), 647. - Bibliogr. : pp. 30-31 (44 titles). - DOI: https://doi.org/10.3390/en10050647 - SNIP 1,104

5. Yang X. Neural Adaptive Dynamic Surface Asymptotic Tracking Control of Hydraulic Manipulators With Guaranteed Transient Performance / X. Yang, W. Deng, J. Yao // IEEE Transactions on Neural Networks and Learning Systems. 2022, pp. 1-11. - Bibliogr. : pp. 10-11 (43 titles). - DOI: https://doi.org/10.1109/TNNLS.2022.3141463 - SNIP 3,306

6. Renner A. Online payload estimation for hydraulically actuated manipulators / A. Renner, H. Wind, O. Sawodny // Mechatronics, Volume 66, April 2020, 102322. - Bibliogr. : pp. 13-14 (51 titles). - DOI: https://doi.org/10.1016/j.mechatronics.2020.102322 - SNIP 3,379

7. Dynamic impact of hydraulic systems using pressure feedback for active damping / M. Cheng, S. Luo, R. Ding, B. Xu, J. Zhang // Applied Mathematical Modelling, Volume 89, Part 1, January 2021, pp. 454-469. - Bibliogr. : p. 468-469 (31 titles). - DOI: https://doi.org/10.1016/j.apm.2020.07.043 - SNIP 1,843

8. Petrovic G. R. Mathematical modelling and virtual decomposition control of heavy-duty parallel-serial hydraulic manipulators / G. R. Petrovic, J. Mattila // Mechanism and Machine Theory, Volume 170, April 2022, 104680. - Bibliogr. : pp. 28-30 (52 titles). - DOI: https://doi.org/10.1016/j.mechmachtheory.2021.104680 - SNIP 2,294

9. Global energy efficiency improvement of redundant hydraulic manipulator with dynamic programming / S. Zheng, R. Ding, J. Zhang, B. Xu // Energy Conversion and Management, Volume 230, 15 February, 2021, 113762. - DOI: https://doi.org/10.1016/j.enconman.2020.113762 - SNIP 2,369

10. Zhang X. Dual extended state observer-based adaptive dynamic surface control for a hydraulic manipulator with actuator dynamics / X. Zhang, G. Shi // Mechanism and Machine Theory, Volume 169, March, 2022, 104647. - Bibliogr. : (34 titles). - DOI: https://doi.org/10.1016/j.mechmachtheory.2021.104647 - SNIP 2,294

11. Han J. Trajectory Tracking Control of a Manipulator Based on an Adaptive Neuro-Fuzzy Inference System / J. Han, F. Wang, C. Sun // Applied Sciences, 2023, 13(2) 1046. - Bibliogr. : pp. 12-13 (28 titles). - DOI: https://doi.org/10.3390/app13021046 - SNIP 1,026

12. Preliminary Experimental Research on the Influence of Counterbalance Valves on the Operation of a Heavy Hydraulic Manipulator during Long-Range Straight-Line Movement / M. J. Lopatka, P. Krogul, A. Rubiec, M. Przybysz // Energies, 2022, 15, 5596. - Bibliogr. : pp. 15-17 (41 titles). DOI: https://doi.org/10.3390/en15155596 - SNIP 1,104

13. Adaptive Fuzzy Back stepping Sliding Mode Control for a 3-DOF Hydraulic Manipulator with Nonlinear Disturbance Observer for Large Payload Variation / H. V. A. Truong, D. T. Tran, X. D. To, K. K. Ahn, M. Jin // Applied Sciences, 2019, 9, 3290. - Bibliogr. : pp. 27-29 (52 titles). - DOI: https://doi.org/10.3390/app9163290 - SNIP 1,026

14. Jensen K. J. Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators / K. J. Jensen, M. K. Ebbesen, M. R. Hansen // Energies 2021, 14, 6566. - Bibliogr. : pp. 26-27 (29 titles). DOI: https://doi.org/10.3390/en14206566 - SNIP 1,104

15. Valve Deadzone/Backlash Compensation for Lifting Motion Control of Hydraulic Manipulators / L. Li, Z. Lin, Y. Jiang, C. Yu, J. Yao // Machines 2021, 9, 57. - Bibliogr. : pp. 17-18 (29 titles). DOI: https://doi.org/10.3390/machines9030057 - SNIP 1,390

16. Xia Y. Motion Control of a Hydraulic Manipulator with Adaptive Nonlinear Model Compensation and Comparative Experiments / Y. Xia, Y. Nie, Z. Chen, L. Lyu, P. Hu // Machines 2022, 10, 214. - Bibliogr. : pp. 18-19 (34 titles). DOI: https://doi.org/10.3390/machines10030214 - SNIP 1,390

17. A Teleoperation Framework Based on Heterogeneous Matching for Hydraulic Manipulator / S. Zhou, C. Shen, S. Zhu, W. Li, Y. Nie, Z. Chen // Machines 2022, 10, 536. - Bibliogr. : pp. 14-15 (30 titles). DOI: https://doi.org/10.3390/machines10070536 - SNIP 1,390

18. Qian J. Static Deformation-Compensation Method Based on Inclination-Sensor Feedback for Large-Scale Manipulators with Hydraulic Actuation / J. Qian, Q. Su, F. Zhang, Y. Ma, Z. Fang, B. Xu // Processes 2020, 8, 81. - Bibliogr. : pp. 16-18 (49 titles). DOI: https://doi.org/10.3390/pr8010081 - SNIP 0,889

19. Perspektivnaya konstrukciya polnopovorotnogo mehanizma kolonny gidravlicheskogo manipulyatora lesovoznogo avtomobilya / V. I. Posmet'ev, V. O. Nikonov, V. V. Posmet'ev, A. A. Mihaylov // Materialy Vserossiyskoy nauchno-prakticheskoy konferencii Sovremennyy lesnoy kompleks strany : problemy i trendy razvitiya. Otv. redaktor A. A. Platonov. Voronezh, 2022. - S. 57-61. - Bibliogr. : s. 60-61 (6 nazv.). - DOI: http://doi.org/10.58168/MFCCPTD2022_57-61

20. Posmetev, V. I. Imitating modeling results of a recuperative hydraulic subsystem of the timber truck manipulator / V. I. Posmetev, V. O. Nikonov, V. V. Posmetev // IOP Conf. Series : Earth and Environmental Science 392 (2019) 012038, Forestry 2019 - Pp. 1-8. - Bibliogr. : p. 7-8 (11 titles). - DOI: http://doi.org/10.1088/1755-1315/392/1/012038

21. Nikonov, V. O. Mathematical model of hydromanipulator of forest vehicle with recuperative hydraulic drive / V. O. Nikonov, V. I. Posmetev, V. V. Posmetev // IOP Conf. Series : Earth and Environmental Science 392 (2019) 012039, Forestry 2019 - Pp. 1-8. - Bibliogr. : p. 8 (10 titles). - DOI: http://doi.org/10.1088/1755-1315/392/1/012039


Login or Create
* Forgot password?