MODELING OF OCTAHEDRAL CLUSTERS FROM STRUCTURAL UNITS
Abstract and keywords
Abstract (English):
Interest in cluster physics increased at the edge of the second half of the 20th century, while the word «cluster» itself appeared (Eng. cluster «cluster, brush, swarm». Recently, the concept of «cluster» has become relevant due to the trend in the development of nanomaterials. Such nanomaterials obtained using unconventional growth mechanisms are extremely interesting in the field of electronics, photonics and are of great interest for catalysis. The structure and properties of nanoobjects, as well as the technologies of their application and modification are determined by the composition, structure, complex of physical (including quantum mechanical) properties, chemical properties and patterns. In the article, using computer graphics, visualization is considered and visual geometric images of nanoclusters are presented, which allow students to avoid a primitive geometric representation of nanoobjects and serve as motivation to study other natural science subjects. The knowledge and skills laid down by students in the course of engineering and computer graphics are applied to the study of the laws of the processes in the nanowire by the example of the principles of constructing geometric models of nanoclusters along an octahedral line using 3D modeling. The features of the morphology of nanoobjects that determine the relevance of the modernization of students' training in the application of interrelated skills of such disciplines as «Nanomaterial Science», «Nanotechnology», «Engineering and computer graphics» are considered. The content of the article is intended for specialists working in the fields of nanotechnology and can be useful for graduate students and students studying in the fields of «Electronics and microelectronics» and «Nanotechnology», as well as for students of technological specialties of mining and geological and architectural and construction profile.

Keywords:
three-dimensional modeling, 3Ds Max, geometric models of nanoclusters, octahedral clusters
References

1. Bobkov A.A., Kononova I.E., Moshnikov V. A. Materialovedenie mikro- i nanosistem. Ierarhicheskie struktury [Materials science of micro- and nanosystems. Hierarchical structures]. pod red. V. A. Moshnikova. SPb., Izd-vo SPbGETU “LETI” Publ., 2017, 204 p. (in Russian)

2. Bojkov A.A., Egiazaryan K.T., Efremov A.V., Kadykova N.S. Problemy geometro-graficheskoj podgotovki studentov vuzov [Problems of geometric and graphic training of university students]. Geometriya i grafika [Geometry and graphics]. 2023, V. 11, I. 1, pp. 4-22. DOI:https://doi.org/10.12737/issn.2308-4898. (in Russian)

3. Vyshnepol'skij V.I., Sal'kov N.A. Celi i metody obucheniya graficheskim disciplinam [Goals and methods of teaching graphic disciplines]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 2, pp. 8-9. DOI:https://doi.org/10.12737/777. (in Russian)

4. Girsh A.G. Novye zadachi nachertatel'noj geometrii. Prodolzhenie [New problems of descriptive geometry. Continued. Geometriya i grafika [Geometry and graphics]. 2021, V. 9, I. 4, pp. 3-10. DOI:https://doi.org/10.12737/2308-4898-2020-18-33. (in Russian)

5. Ivanov G.S. Perspektivy nachertatel'noj geometrii kak uchebnoj discipliny [Prospects of descriptive geometry as an academic discipline] Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 26-27. DOI:https://doi.org/10.12737/775. (in Russian)

6. Ignat'ev S.A., Muratbakeev E.H., Voronina M.V. Povyshenie naglyadnosti predstavleniya izuchaemyh v nachertatel'noj geometrii ob"ektov [Increasing the visibility of the representation of objects studied in descriptive geometry] / Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 1, pp. 44-53. DOI:https://doi.org/10.12737/2308-4898-2022-10-1-44-53. (in Russian)

7. Myasnichenko V.S., Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu. Vliyanie vneshnego davleniya na termodinamicheskuyu stabil'nost' GCK nanokristallov zolota, serebra i medi c «magicheskim» chislom atomov 147 [The effect of external pressure on the thermodynamic stability of HCC nanocrystals of gold, silver and copper with a "magic" number of 147 atoms]. Sbornik nauchnyh trudov VI mezhdunarodnoj nauchnoj konferencii «Himicheskaya termodinamika i kinetika» pod redakciej YU.D. Orlova [Collection of scientific papers of the VI International Scientific Conference "Chemical Thermodynamics and Kinetics" edited by Yu.D. Orlov]. Publishing house: Tver State University. 2016, pp. 186-187. (in Russian)

8. Myasnichenko V.S., Starostenkov M.D. Primenenie predstavleniya o strukturnyh mnogogrannikah zapolneniya koordinacionnyh sfer v ob"emnyh kristallah k probleme poiska ustojchivyh form nanoklasterov. CHast’ 1 [Application of the concept of structural polyhedra filling coordination spheres in bulk crystals to the problem of finding stable forms of nanoclusters. Part 1]. Fundamental'nye problemy sovremennogo materialovedeniya [Fundamental problems of modern materials science]. 2011, V. 8, I. 2, pp. 49-52. (in Russian)

9. Myasnichenko V.S., Starostenkov M.D. Primenenie predstavleniya o strukturnyh mnogogrannikah zapolneniya koordinacionnyh sfer v ob"emnyh kristallah k probleme poiska ustojchivyh form nanoklasterov. CHast’ 2 [Application of the concept of structural polyhedra filling coordination spheres in bulk crystals to the problem of finding stable forms of nanoclusters. Part 2]. Fundamental'nye problemy sovremennogo materialovedeniya [Fundamental problems of modern materials science]. 2012, V. 9, I. 3, pp. 284-288. (in Russian)

10. Oyuunzhargal Ch., Oyuunzayaa E. Tendencii obucheniya v inzhenernoj grafike [Learning trends in Engineering graphics] / Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 2, pp. 53-59. DOI:https://doi.org/10.12737/issn.2308-4898. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-53-59. (in Russian)

11. Polenov Yu.V., Lukin M.V., Egorova E.V. Fiziko-himicheskie osnovy nanotekhnologij: ucheb. posobie [Physico-chemical fundamentals of nanotechnology: textbook. stipend]. Ivanovo, Ivan. gos. chem.-technol. un-T. Publ., 2013. 196 p. (in Russian)

12. Redel' L.V., Gafner Yu.Ya., Gafner S.L. Rol' «magicheskih» chisel pri formirovanii struktury v malyh nanoklasterah serebra [The role of "magic" numbers in the formation of structure in small silver nanoclusters]. Fizika tverdogo tela [Solid State Physics]. 2015, V. 57, I. 10. pp. 2061-2070. (in Russian)

13. Sal'kov N.A. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric modeling and descriptive geometry]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 8-9. DOI:https://doi.org/10.12737/22841. (in Russian)

14. Sal'kov N.A. Kachestvo geometricheskogo obrazovaniya pri razlichnyh podhodah k metodike obucheniya [The quality of geometric education with different approaches to teaching methods] Geometriya i grafika [Geometry and graphics]. 2016, V. 8, I. 4, pp. 47-60. DOI:https://doi.org/10.12737/2308-4898-2021-8-4-47-60. (in Russian)

15. Sal'kov N.A. Mesto nachertatel'noj geometrii v sisteme geometricheskogo obrazovaniya tekhnicheskih vuzov [The place of descriptive geometry in the system of geometric education of technical universities] Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 53-61. DOI:https://doi.org/10.12737/21534. (in Russian)

16. Sal'kov N.A. Osnovnye prichiny plohogo usvoeniya nachertatel'noj geometrii [The main reasons for poor assimilation of descriptive geometry] Geometriya i grafika [Geometry and graphics]. 2021, V. 9, I. 2, pp. 3-11. DOI:https://doi.org/10.12737/2308-4898-2021-9-2-3-11. (in Russian)

17. Spivak L.V., Shchepina N.E. Fiziko-himicheskie osnovy processov mikro- i nanotekhnologii: ucheb. posobie: v 2 ch. [Physico-chemical fundamentals of micro- and nanotechnology processes [Electronic resource]: textbook. manual: in 2 parts] Perm. gos. nac. issled. un-t. Elektron. dan. [Perm. state. national. research. un-t. Electron. dan.]. Perm'. 2018. P. 1. 202 p. (in Russian)

18. Suzdalev I.P. Nanotekhnologiya: fiziko-himiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials]. Moscow, KomKniga Publ., 2006. 592 p. (in Russian)

19. Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physico-chemical aspects of studying clusters, nanostructures and nanomaterials]. Tver, Publishing House of Tver State University Publ., 2021, V. 13, p. 956. (in Russian)

20. Folomkin A.I., Yankilevich S.V., Moroz O.N. Ocenka rezul'tativnosti primeneniya pilotnogo proekta programmy-trenazhyora po nachertatel'noj geometrii [Evaluation of the effectiveness of the application of the pilot project of the descriptive geometry simulator program]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 3, pp. 54-70. DOIhttps://doi.org/10.12737/2308-4898-2022-10-3-54-70. (in Russian)

21. Gasanly S.A., Tomaev V.V., Stoyanova T.V. The concept of the phases ratio control during the formation of composite filamentary nanocrystals xInSe-(1-x)In2O3 on glass substrates J. Physics: Conf. Ser. 2017, V. 917, 32021. DOIhttps://doi.org/10.1088/1742-6596/917/3/032021.

22. Harbola M. K. Magic numbers for metallic clusters and the principle of maximum hardness. PNAS. 1992, V. 89 (3), pp. 1036-1039. DOI: https://doi.org/10.1073/pnas.89.3.1036.

23. Jia Y., Yu X., Zhang H., Cheng L., Luo Z. Tetrahedral Pt 10−Cluster with Unique Beta Aromaticity and Superatomic Feature in Mimicking Methane. The Journal of Physical Chemistry Letters. 2021, V. 12, pp. 5115-5122. DOI:https://doi.org/10.1021/acs.jpclett.1c01178.

24. Kaatz F. H., Bultheel A., Engel M., Vogel N. Magic Mathematical Relationships for Nanoclusters. Nanoscale Research Letters. 2019, V.14, p. 150. DOI: https://doi.org/10.1186/s11671-019-2939-5.

25. Kononova I.E., Moshnikov V.A., Kononov P.V. Development of a model for the formation of materials with a hierarchical pore structure produced under sol-gel processing conditions. Inorganic Materials. 2018, V. 54, I. 5, pp. 478-489. DOI: https://doi.org/10.1134/S0020168518050060.

26. Kononova I., Kononov P., Moshnikov V., Ignat’ev S. Fractal-Percolation structure architectonics in sol-gel synthesis. International Journal of Molecular Sciences. 2021, V.22, pp. 10521-10537. DOI: https://doi.org/10.3390/ijms221910521.

27. Kononova I. E., Maraeva E. V., Skornikova S. A., Moshnikov V. A. Influence of Binder on Porous Structure of Zeolite Compositions and Their Catalytic Activity. Glass physics and chemistry. 2020, V. 46, I. 2, pp. 162-169. DOI:https://doi.org/10.1134/S1087659620020066.

28. Madison A.E., Madison P.A. Looking for alternatives to the superspace description of icosahedral quasicrystals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2019, V. 475, pp. 20180667. DOI:https://doi.org/10.1098/rspa.2018.0667.

29. Madison A.E., Madison P.A. Structure of icosahedral quasicrystals within the multiple cell approach. Structural Chemistry. 2020, V. 31 (1), pp. 485-505. DOI: https://doi.org/10.1007/s11224-019-01430-w.

30. Madison A.E. Substitution rules for icosahedral quasicrystals. RSC Adv. 2015, V.5, pp. 5745-5753. DOI: https://doi.org/10.1039/C4RA09524C.

31. Krasnyy V.A. The use of nanomaterials to improve the wear resistance of machine parts under fretting corrosion conditions. In IOP Conference Series: Materials Science and Engineering; IOP Publishing. 2019, V. 560, pp. 1-5. DOIhttps://doi.org/10.1088/1757-899x/560/1/012186.

32. Pleskunov I.V., Syrkov A.G. Development of research of low-dimension metal-containing systems from P.P.Weymarn to our days. J. Min. Inst. 2018, V. 231, pp. 287-291. DOI:https://doi.org/10.25515/PMI.2018.3.287.

33. Reimann S. M., Koskinen M., Ha¨kkinen H., Lindelof P. E., Manninen M. Magic triangular and tetrahedral clusters. Physical review B. 1997, V. 56, I. 19, pp. 1247-1250. DOI:https://doi.org/10.1103/PhysRevB.56.12147.

34. Salikhov K.M., Stoyanov N.D., Stoyanova T.V. Using Optical Activation to Create Hydrogen and Hydrogen-Containing Gas Sensors. Key Eng. Mater. 2020, V. 854, pp. 87-93. DOI:https://doi.org/10.4028/www.scientific.net/kem.854.87.

35. Smerdov R., Mustafaev A., Spivak Y., Moshnikov V. Functionalized nanostructured materials for novel plasma energy systems. In Topical Issues of Rational Use of Natural Resources. 2019, CRC Press. 2019, pp. 434-441. DOI:https://doi.org/10.1201/9781003014577-55.

36. Smerdov R., Spivak Y., Bizyaev I., Somov P., Gerasimov V., Mustafaev A., Moshnikov V. Advances in Novel Low-Macroscopic Field Emission Electrode Design Based on Fullerene-Doped Porous Silicon. Electronics. 2020, V. 10, p. 42. DOI:https://doi.org/10.3390/electronics10010042.

37. Spivak Yu. M., Kononova I. E., Kononov P. V., Moshnikov V. A., Ignat’ev S. A. The architectonics features of heterostructures for ir range detectors based on polycrystalline layers of lead chalcogenides. Crystals. 2021, V. 11, pp.1143-1159. DOI:https://doi.org/10.3390/cryst11091143.

38. Syrkov A.G. On the priority of Saint-Petersburg Mining University in the field of nanotechnology science and nanomaterials. J. Min. Inst. 2016, V. 221, pp. 730-736. DOI: https://doi.org/10.18454/pmi.2016.5.730.

39. Tomaev V.V., Levine K.L., Stoyanova T.V., Sirkov A.G. Formation of nanocomposite film (polypirrol)/(aluminum) oxide on aluminum surface. In AIP Conference Proceedings; AIP Publishing LLC. 2019, V. 2064, pp. 030016. DOI:https://doi.org/10.1063/1.5087678.

40. Tomaev V., Levine K., Stoyanova T., Syrkov A.G. Synthesis and Study of a Polypyrrole-Aluminum Oxide Nanocomposite Film on an Aluminum Surface. Glas. Phys. Chem. 2019, V. 45, pp. 291-297. DOIhttps://doi.org/10.1134/s1087659619040126.

41. Wang J., Mbah Ch. F., Przybilla T., Zubiri B. A., Spiecker E. Magic number colloidal clusters as minimum free energy structures. Nature communications. 2018, V. 9 (1), p. 5259. DOI:https://doi.org/10.1038/s41467-018-07600-4.

Login or Create
* Forgot password?