ACTIVE LONGITUDES AND THE STRUCTURE OF THE LARGE-SCALE MAGNETIC FIELD AT SOLAR MINIMUM
Abstract and keywords
Abstract (English):
We have studied deep minima of 11-year solar activity cycles 13–14, 14–15, 22–23, 23–24, 24–25, using the RGO and USAF/NOAA sunspot group catalogs. All of them have a large number of spotless days. Nonetheless, active longitudes as preferred zones, where sunspots occur, appear at this solar cycle phase. Analysis of synoptic maps and WSO daily magnetograms reflecting the structure of a weak large-scale field shows a non-axisymmetric component of the solar magnetic field. At solar minimum in the structure of the large-scale magnetic field, there are regions of the magnetic field of positive and negative polarity elongated along the meridian and crossing the equator. The most pronounced of them are located in the zone of active longitudes and are often connected with the polar magnetic fields. We discuss the possible nature of the meridional structures of the large-scale field during solar minimum. This might be due to giant convection cells with a banana cell structure.

Keywords:
large-scale magnetic field, active regions
Text
Text (PDF): Read Download
References

1. Bai T. Distribution of flares on the Sun during 1955-1985: ”hot spots” (active zones) lasting for 30 years. Astrophys. J. 1988, vol. 328, rr. 860-874. DOI:https://doi.org/10.1086/166344.

2. Beck J.G., Duvall T.L., Scherrer P.H. Long-lived giant cells detected at the surface of the Sun. Nature. 1998, vol. 394, rr. 653-655. DOI:https://doi.org/10.1038/29245.

3. Becker U. Untersuchungen über die Herdbildung der Sonnerflecken. Z. Astrophys. 1955, vol. 37, rr. 47-66.

4. Benevolenskaya E. Did recent large-scale evolution of the magnetic field presage the unusual current minimum? ASP Conf. Ser. 2010, vol. 428, rr. 93-101.

5. Benevolenskaya E.E., Hocksema J.T., Kosovichev A.G., Scherrer P.H. The interaction of new and old magnetic flux at the beginning of solar cycle 23. Astrophys. J. 1999, vol. 517, rr. L163-L166. DOI:https://doi.org/10.1086/312046.

6. Berdygina S.V., Usoskin I.G. Active longitudes in sunspot activity: Century scale persistence. Astron. Astrophys. 2003, vol. 405, rr. 1121-1128. DOI:https://doi.org/10.1051/0004-6361:20030748.

7. Bumba V. Concerning the formation of giant regular structures in solar atmosphere. Solar Phys. 1970, vol. 14, rr. 80-88. DOI:https://doi.org/10.1007/BF 00240162.

8. Bumba V., Howard R. A study of the development of active regions on the Sun. Astrophys. J. 1965a, vol. 141, rr. 1492-1501. DOI:https://doi.org/10.1086/148237.

9. Bumba V., Howard R. Large-scale distribution of solar magnetic fields. Astrophys. J. 1965b, vol. 141, rr. 1502-1511. DOI:https://doi.org/10.1086/148238.

10. Bumba V., Howard R. Solar activity and recurrences in magnetic-field distribution. Solar Phys. 1969, vol. 7, rr. 28-38. DOI:https://doi.org/10.1007/BF 00148402.

11. Bumba V., Howard R., Smith S. Large-scale patterns of solar magnetic fields. Astronom. J. 1964, vol. 69, p. 535. DOI:https://doi.org/10.1086/109387.

12. Duvall T.L.Jr., Wilcox J.M., Svalgaard L., Scherrer P.H., McIntosh P.S. Comparison of Hα synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys. 1977, vol. 55, rr. 63-68. DOI:https://doi.org/10.1007/BF00150874.

13. Elliot J.R., Miesh M.S., Toomre J. Turbulent solar convection and its coupling with rotation: The effect of Prandtl number and thermal boundary conditions on the resulting differential rotation. Astrophys. J. 2000, vol. 533. rr. 546-556. DOI:https://doi.org/10.1086/308643.

14. Gaizauskas V., Harvey K.L., Harvey J.W., Zwaan C. Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys. J. 1983, vol. 265, rr. 1056-1065. DOI:https://doi.org/10.1086/160747.

15. Gastenmiller M.J.M., Zwaan C., Van der Zalm E.B.J. Sunspot Nests-Manifestations of sequences in magnetic activity. Solar Phys. 1986, vol. 105, rr. 237-255. DOI:https://doi.org/10.1007/BF00172045.

16. Gilman P.A. Model calculations concerning rotation al high solar latitudes and the depth of the solar convection zone. Astrophys. J. 1979, vol. 231, rr. 284-292. DOI:https://doi.org/10.1086/157191.

17. Grigoryev V.M., Latushko S.M. E-W motions of large-scale magnetic field structures of the Sun. Solar Phys. 1992, vol. 140, rr. 239-245. DOI:https://doi.org/10.1007/BF 00146311.

18. Grigoryev V., Ermakova L., Khlystova A. Appearance of active regions at the end of solar cycle 24 and the beginning of cycle 25. Solar-Terr. Phys. 2022, vol. 8, no. 4, pp. 28-35. DOI:https://doi.org/10.12737/stp-84202202.

19. Hathaway D.N., Gilman P.A., Harvey J.W., Hill F., Howard R.F., Jones H.P., et al. GONG observations of solar surface flows. Science. 1996. Vol. 272. P. 1306-1309. DOI:https://doi.org/10.1126/science, 272.5286.1306.

20. Hathaway D.N., Beck J.G., Bogart R.S., Bachmann K.T., Khatri G., Petitto J.M., et al. The photospheric convection spectrum. Solar Phys. 2000, vol. 193, rr. 299-312. DOI: 10.1023/ A:5200809766.

21. Hathaway D.N., Upton L., Colegrove O. Giant convection cells found on the Sun. Science. 2013, vol. 342, rr. 1217-1219. DOI:https://doi.org/10.1126/science.1244682.

22. Kostuchenko I.G., Benevolenskaya E.E. Active longitudes in minima of solar activity. Geomagnetism and Aeronomy. 2014, vol. 54, rr. 1019-1025. DOI:https://doi.org/10.1134/S001679321408009X.

23. Kramynin A.P., Mikhalyna F.A. Active longitudes in the period of overlap of 11-year cycles. Geomagnetism and Aeronomy. 2016. Vol. 56. P. 1006-1009. DOI:https://doi.org/10.1134/S001679321 6080132.

24. McIntosh P.S. Motions and interactions among large-scale solar structures on H-alpha synoptic charts. ASP Conference Series. 2005, vol. 346, pp. 193-200.

25. Miesh M.S., Brun A.S., De Rosa M.L., Toomre J. Structure and evolution of giant cells in global models of solar convection. Astrophys. J. 2008, vol. 673, pp. 557-575. DOI:https://doi.org/10.1086/523838.

26. Obridko V. Large-scale patterns and “active longitudes”. Proc. IAU Symp. 2010, vol. 264, rr. 241-250. DOI: 10.1017/ S1743921309992699.

27. Parker E.N. Kinematical hydromagnetic theory and its application to the low solar photosphere. Astrophys. J. 1963, vol. 138, p. 552. DOI:https://doi.org/10.1086/147663.

28. Piddington J.H. Large-scale motions in the Sun. Solar Phys. 1971, vol. 21, pp. 4-20. DOI:https://doi.org/10.1007/BF00155767.

29. Pikelner S.B. Formation of the chromospheric network and structure of the magnetic field. Astr. Zh. 1962, vol. 39, p. 973.

30. Pipin V.V., Kosovichev A.G. Effects of large-scale non-axisymmetric perturbations in the mean-field solar dynamo. Astrophys. J. 2015, vol. 813, p. 134. DOI:https://doi.org/10.1088/0004-637X/813/2/134.

31. Simon G.W., Weiss N.O. Supergranules and hydrogen convection zone. Z. Astrophys. 1968, vol. 69, pp. 435-450.

32. Vernova E.S., Tyasto M.I., Baranov D.G., Danilova O.A. Nonaxisymmetric component of solar activity: the vector of the longitudinal asymmetry. Solar Phys. 2020, vol. 296, iss. 6, article id. 86. DOI:https://doi.org/10.1007/s11207-020-01651-x.

33. URL: http://SolarCycleSciences.com (accessed June 28, 2023).

34. URL: http://wso.stanford.edu (accessed June 28, 2023).

35. URL: https://www.sidc.be/silso/spotless (accessed June 28, 2023).

36. URL: https://wiki5.ru/wiki/List_of_solar_cycles (accessed June 28, 2023).

Login or Create
* Forgot password?