INFLUENCE OF GEOMAGNETIC DISTURBANCES ON SCINTILLATIONS OF GLONASS AND GPS SIGNALS AS OBSERVED ON THE KOLA PENINSULA
Abstract and keywords
Abstract (English):
We have compared effects of geomagnetic disturbances during magnetic storms of various types (CME and CIR) and during an isolated substorm on scintillations of GLONASS and GPS signals, using a Septentrio PolaRx5 receiver installed in Apatity (Murmansk Region, Russia). We analyze observational data for 2021. The magnetic storms of November 3–4, 2021 and October 11–12, 2021 are examined in detail. The November 3–4, 2021 magnetic storm was one of the most powerful in recent years. The analysis shows that the scintillation phase index reaches its highest values during nighttime and evening substorms (σϕ≈1.5–1.8), accompanied by a negative bay in the magnetic field. During magnetic storms, positive bays in the magnetic field, associated with an increase in the eastward electrojet, lead, however, to quite comparable values of the phase scintillation index. An increase in phase scintillations during nighttime and evening disturbances correlates with an increase in the intensity of ULF waves (Pi3/Pc5 pulsations) and with the appearance of aurora arcs. This confirms the important role of ULF waves in forming the auroral arc and in developing ionospheric irregularities. The predominance of the green line in the spectrum of auroras indicates the contribution of disturbances in the ionospheric E layer to the scintillation increase. Pulsating auroras, associated with ionospheric disturbances in the D layer, do not lead to a noticeable increase in phase scintillations. Analysis of ionospheric critical frequencies according to ionosonde data from the Lovozero Hydrometeorological Station indicates the contribution of the sporadic Es layer of the ionosphere to jumps in phase scintillations. The difference between phase scintillation values on GLONASS and GPS satellites during individual disturbances can be as great as 1.5 times, which may be due to different orbits of the satellites. At the same time, the level of GLONASS/GPS scintillations at the L2 frequency is higher than at the L1 frequency. We did not find an increase in the amplitude index of scintillations during the events considered.

Keywords:
ionosphere, GLONASS, GPS, magnetic storm, substorm, aurora
Text
Publication text (PDF): Read Download
References

1. Astafyeva E., Yasyukevich Yu., Maksikov A., Zhivetiev I. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather. 2014, vol. 12, iss. 7, pp. 508-525. DOI:https://doi.org/10.1002/2014SW001072.

2. Basu S., Groves K.M., Basu S., Sultan P.J. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J. Atmos. Solar-Terr. Phys. 2002, vol. 64 (16), pp. 1745-1754.

3. Belakhovsky V.B., Pilipenko V.A., Samsonov S.N., Lorentsen D. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and riometer absorption. Geomagnetism and Aeronomy. 2016, vol. 56, iss. 1, pp. 42-58. DOI:https://doi.org/10.1134/S001679321506002X.

4. Belakhovsky V.B., Pilipenko V.A., Sakharov Ya.A., Lorentzen D.L., Samsonov S.N. Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012. Earth, Planets and Space. 2017, vol. 69, iss. 1, article id. #105, 25 p.

5. Belakhovsky V.B., Jin Y., Miloch W. Influence of the substorm precipitation and polar cap patches on GPS signals at high latitudes. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space]. 2020, vol. 17, no. 6, pp. 139-144. DOI:https://doi.org/10.21046/2070-7401-2020-17-6-139-144.

6. Belakhovsky V.B., Jin Y., Miloch W.J. Influence of different types of ionospheric disturbances on GPS signals at polar latitudes. Ann. Geophys. 2021, vol. 39, pp. 687-700.

7. Belakhovsky V.B., Jin Y., Miloch W. Dayside scintillations of GPS signals according to the observations on the Svalbard archipelago. Bulletin of the Russian Academy of Sciences: Physics. 2022, vol. 86, iss. 3, pp. 348-353. DOI:https://doi.org/10.3103/S1062873822030066.

8. Belakhovsky V.B., Pilipenko V.A., Sakharov Ya.A., Selivanov V.N. The growth of geomagnetic-induced currents during geomagnetic storms caused by coronal mass ejection and high-speed solar wind stream in 2021. Bulletin of the Russian Academy of Sciences: Physics 2023, vol. 87, no. 2, pp. 236-242.

9. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, vol. 111, iss. A7, A07S08. DOI:https://doi.org/10.1029/2005JA011447.

10. Cherniak I., Krankowski A., Zakharenkova I. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 2014, vol. 49, pp. 653-662. DOI:https://doi.org/10.1002/2014RS005433.

11. Chernous S.A., Shvets M.V., Filatov M.V., Shagimuratov I.I., Kalitenkov N.V. Studying navigation signal singularities during auroral disturbances. Russian J. Physical Chemistry B. 2015, vol. 9, iss. 5, pp. 778-784. DOI:https://doi.org/10.1134/S1990793115050188.

12. Chernous S.A., Shagimuratov I.I., Ievenko I.B., Filatov M.V., Efishov I.I., Shvets M.V., Kalitenkov N.V. Auroral Perturbations as an Indicator of Ionosphere Impact on Navigation Signals. Russian Journal of Physical Chemistry B. 2018, vol. 12, iss. 3, pp. 562-567. DOI:https://doi.org/10.1134/S1990793118030065.

13. Chernyshov A.A., Miloch, W.J., Jin Y., Zakharov V.I. Relationship between TEC jumps and auroral substorm in the high-latitude ionosphere. Scientific Reports. 2020, vol. 10, article id. 6363. DOI:https://doi.org/10.1038/s41598-020-63422-9.

14. D’Onofrio M., Partamies N., Tanskanen E. Eastward electrojet enhancements during substorm activity. J. Atmos. Solar-Terr. Phys. 2014, vol. 119, pp. 129-137.

15. Edemskiy I.K., Yasyukevich Y.V. Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm. Remote Sensing. 2022, vol. 14, iss. 21,p. 5486. DOI:https://doi.org/10.3390/rs14215486.

16. Forte B. Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J. Atmos. Solar-Terr. Phys. 2005, vol. 67, pp. 1100-1109. DOI:https://doi.org/10.1016/j.jastp.2005.01.011.

17. Gao S., MacDougall J. A dynamic ionosonde design using pulse coding. Can. J. Phys. 1991, vol. 68, p. 1184.

18. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, vol. 99, A4, pp. 5771-5792.

19. Kintner P.M., Ledvina B.M., de Paula E.R. GPS and ionospheric scintillations. Space Weather. 2007, vol. 5, p. S0900.

20. Kokubun S., McPherron R.L., Russell C.T. Triggering of substorms by solar wind discontinuities. J. Geophys. Res. 1977, vol. 82, pp. 74-86.

21. Kozelov B.V., Chernous S.A., Shagimuratov I.I., Filatov M.V., Efishov I.I., Tepenitsina N.Yu., Fedorenko Yu.V., Pilgaev S.V. Heliogeophysical factors, the influence of which could cause errors in GPS operation during the NATO military exercises “Trident Juncture” from 25/10/2018 to 7/11/2018. Physics of Auroral Phenomena, Proc. XLII Annual Seminar. 2019, pp. 48-52. (In Russian).

22. Lyatsky W., Elphinstone R.D., Pao Q., Cogger L.L. Field line resonance interference model for multiple auroral arc generation. J. Geophys. Res. 1999, vol. 104, iss. A1, pp. 263-268. DOI:https://doi.org/10.1029/1998JA900027.

23. Makarevich R.A., Crowley G., Azeem I., Ngwira C., Forsythe V.V. Auroral E-region as a source region for ionospheric scintillation. J. Geophys. Res. 2021, vol. 126, p. e2021JA029212. DOI:https://doi.org/10.1029/2021JA029212.

24. Mushini S.C., Jayachandran P.T., Langley R.B., Mac-Dougall J.W., Pokhotelov D. Improved amplitude and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Solutions. 2012, vol. 16, pp. 363-373. DOI:https://doi.org/10.1007/s10291-011-0238-4.

25. Miyoshi Y., Oyama S., Saito S., Kurita S., Fujiwara H., Kataoka R., Ebihara Y., Kletzing C., Reeves G., Santolik O., Clilverd M., Rodger C.J., Turunen E., Tsuchiya F. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. J. Geophys. Res. 2015, vol. 120. pp. 2754-2766. DOI:https://doi.org/10.1002/2014JA020690.

26. Oksavik K., Van der Meeren C., Lorentzen D.A., Baddeley L.J., Moen J. Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere. J. Geophys. Res. 2015, vol. 120, pp. 9161-9175. DOI:https://doi.org/10.1002/2015JA021528.

27. Prikryl P., Jayachandran P.T., Mushini S.C., Pokhotelov D., MacDougall J.W., Donovan E., Spanswick E., St.-Maurice J.-P. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann. Geophys. 2010, vol. 28, pp. 1307-1316.

28. Shagimuratov I.I., Filatov M.V., Efishov I.I., Zakharenkova I.E., Tepenitsyna N.Y. Fluctuations in the total electron content and errors in GPS positioning caused by polar auroras during the auroral disturbance of September 27, 2019. Bulletin of the Russian Academy of Sciences: Physics. 2021, vol. 85 (3), pp. 318-323.

29. Smith A.M., Mitchell C.N., Watson R.J., Meggs R.W., Kintner P.M., Kauristie K., Honary F. GPS scintillation in the high arctic associated with an auroral arc. Space Weather. 2008, vol. 6, p. s03d01. DOI:https://doi.org/10.1029/2007SW000349.

30. Thorne R.M., Ni B., Tao X., Horne R.B., Meredith N.P. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature. 2010, vol. 467, pp. 943-946. DOI:https://doi.org/10.1038/nature09467.

31. Van der Meeren C., Oksavik K., Lorentzen D.A., Rietveld M.T., Clausen L.B.N. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora. J. Geophys. Res. 2015, vol. 120, iss. 12, p. 10607-10621.

32. Yasyukevich Yu.V., Zhivetiev I.V., Yasyukevich A.S., Voeykov S.V., Zakharov V.I., Perevalova N.P., Titkov N.N. Ionosphere and magnetosphere disturbance impact on operation slips of global navigation satellite systems. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space] 2017, vol. 14, no. 1, pp. 88-98. (In Russian).

33. Yeh K.C., Liu C.H. Radio wave scintillations in the ionosphere. Proc. IEEE. 1982, vol. 70, no. 4, pp. 24-64. DOI:https://doi.org/10.1109/PROC.1982.12313.

34. Zakharov V.I., Yasyukevich Yu.V., Titova M.A. Effect of magnetic storms and substorms on GPS slips at high latitudes. Cosmic Res. 2016, vol. 54, iss. 1, pp. 20-30. DOI:https://doi.org/10.1134/S0010952516010147.

35. Zakharov V.I., Chernyshov A.A., Miloch W., Jin Y. Influence of the ionosphere on the parameters of the GPS navigation signals during a geomagnetic substorm. Geomagnetism and Aeronomy. 2020, vol. 60, iss. 6, pp. 754-767. DOI:https://doi.org/10.1134/S0016793220060158.

Login or Create
* Forgot password?