Russian Federation
Russian Federation
The availability of the material and technological capabilities of modern information and communication technologies in the field of education allows, on the one hand, to realize the creative potential of each teacher in creating such tools as educational and methodological complexes, applications, simulators, educational games, and so on, significantly changing the pedagogical tools, and on the other hand, the expanding range of newly created teaching aids causes an urgent need for an adequate assessment of their impact on learning outcomes. The purpose of the work is to evaluate the effectiveness of using the simulator program for independent studies of students in the discipline "Descriptive geometry". The work used such research methods as questionnaires using Google Forms, testing, timing, statistical data processing, comparison of control and experimental groups, construction of bar and pie charts, SWOT analysis. In the process of pedagogical research, the following platforms and programs were used: LMS Moodle, Microsoft Excel, an original simulator program for the development of students' spatial thinking. It has been established that the developed simulator program for the development of spatial thinking of students of engineering specialties studying the discipline "Descriptive Geometry" allows increasing students' interest in mastering the topics of the discipline, favorably affects the formation of skills for constructing orthogonal projections of a point, reducing the time for solving problems on this topic by 40% and also positively affects the degree of adequacy of students' self-assessment. It has also been established that to check in a semi-automatic mode 80 reports of students on the implementation of individual tasks in the simulator program, the teacher will spend only about 30 ... 40 minutes of his time. At the end of the article, ways to improve the simulator program are given and directions for further research are outlined.
simulator program, spatial thinking, information and communication technologies, LMS Moodle, learning effectiveness, skills formation
1. Bojkov A.A. Komp'yuternaya proverka reshenij zadach nachertatel'noj geometrii dlya inzhenerno-graficheskogo obrazovaniya // Geometriya i grafika. 2020. V.8. I.2. pp. 66-81. DOI: https://doi.org/10.12737/2308-4898-2020-66-81.
2. Boyashova E.P. Osobennosti distancionnogo obucheniya geometro-graficheskim disciplinam s ispol'zovaniem metodov konstruktivnogo geometricheskogo modelirovaniya. // Geometriya i grafika. 2021. V.9. I.3. pp. 46-56. DOI: https://doi.org/10.12737/2308-4898-2021-9-3-46-56.
3. Godunov A.I., Kvyatkovskij Yu.G., Yurkov N.K. Sintez avtomatizirovannoj sistemy ocenivaniya kachestva pilotirovaniya na aviacionnom trenazhere // Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Tekhnicheskie nauki. 2012. V.21. I.1. pp. 58-64.
4. Damchaasuren H. Vnedrenie elektronnoj tekhnologii v obrazovanie // Geometriya i grafika. 2021. V.9. I.3. pp. 39-45. DOI: https://doi.org/10.12737/2308-4898-2021-9-3-39-45.
5. Ignat'ev S.A., Tret'yakova Z.O, Voronina M.V. Obzor obrazovatel'nyh kursov na osnove tekhnologij dopolnennoj real'nosti // Geometriya i grafika. 2020. V.8. I.3. pp. 67-86. DOI: https://doi.org/10.12737/2308-4898-2020-67-86.
6. Il'in V.A, Pahomov E.S. Ocenka kachestva trenazhernyh sredstv // Programmnye produkty i sistemy. 2021. V.34. I.1. pp. 67-74. URL: https://cyberleninka.ru/article/n/otsenka-kachestva-trenazhernyh-sredstv
7. Il'in V.A. Pahomov E.S., Sokolov S.N., Shuvanov A.D. Takticheskie trenazhernye kompleksy dlya podgotovki k vedeniyu boevyh dejstvij na more // Programmnye produkty i sistemy. 2016. V.113. I.1. pp. 22-26. DOI:https://doi.org/10.15827/0236-235X.113.022-026.
8. Katuncov E. V. Obnovlenie kursov po osnovam IT v setevoj akademii Cisco. // Sovremennye obrazovatel'nye tekhnologii v podgotovke specialistov dlya mineral'no-syr'evogo kompleksa Sankt-Peterburg: Sankt-Peterburgskij gornyj universitet. 2020. V.1. pp 186 - 190.
9. Katuncov E.V., Kultan Y.A., Mahovikov A.B. Primenenie sredstv elektronnogo obucheniya pri podgotovke specialistov v oblasti informacionnyh tekhnologij dlya predpriyatij mineral'no-syr'evogo kompleksa // Zapiski Gornogo instituta. 2017. V.226. I.4. pp. 503-508. DOI:https://doi.org/10.25515/pmi.2017.4.503
10. Krasil'nikova V.A. Metodologiya sozdaniya edinoj informacionno-obrazovatel'noj sredy universitetskogo okruga // Vestnik OGU. 2002. I.2. p. 105-110.
11. Kuatov B.Zh. Sistemnyj podhod k organizacii trenazhernoj podgotovki letnogo sostava v sovremennyh usloviyah // NiKSS. 2014. V.8. I.4. pp. 34-39.URL: https://cyberleninka.ru/article/n/sistemnyy-podhod-k-organizatsii-trenazhernoy-podgotovki-letnogo-sostava-v-sovremennyh-usloviyah.
12. Merkulova V.A., Tret'yakova Z.O., Shestakova I.G. Innovacii v inzhenerno-tekhnicheskom obrazovanii s ispol'zovaniem AR-tekhnologii na primere disciplin nachertatel'noj geometrii i inzhenernoj grafiki // Perspektivy Nauki i Obrazovaniya. 2022. V.58. I.4. pp. 243.
13. Musaeva T.V., Urago A.A. Dopolnennaya real'nost' v provedenii zanyatij po inzhenernym tekhnicheskim disciplinam proektirovaniya // Geometriya i grafika. 2021. I.2. pp. 46-55. DOI: https://doi.org/10.12737/2308-4898-2021-9-2-46-55.
14. Nazarova O.N. Sovremennye problemy prepodavaniya kursa «Prikladnaya geometriya i inzhenernaya grafika» dlya ekspluatacionnyh napravlenij aviacionnogo vuza // Geometriya i grafika. 2020. I.2. pp. 58-65. DOI: https://doi.org/10.12737/2308-4898-2020-58-65.
15. Sal'kov N.A. Otobrazhenie problem geometricheskogo obrazovaniya v zhurnale «Geometriya i grafika»// Geometriya i grafika. 2020. I.3. pp. 87-119. DOI: https://doi.org/10.12737/2308-4898-2020-87-119.
16. Sal'kov N. A. Sistemnyj podhod k izucheniyu nachertatel'noj geometrii // Geometriya i grafika. 2022. I.1. pp.14-23. DOI: https://doi.org/10.12737/2308-4898-2022-10-1-14-23.
17. Svidetel'stvo o gosudarstvennoj registracii programmy dlya EVM 2021681410 Rossijskaya Federaciya. Trenazher dlya razvitiya navykov postroeniya proekcij geometricheskih ob"ektov / Folomkin A.I., CHupin S.A., Ustimenko K.D. ; zayavitel' i pravoobladatel' FGBOU VO "Sankt-Peterburgskij gornyj universitet". - № 2021680541 ; zayavl. 14.12.2021; opubl. 21.12.2021 - 1s.
18. Soldatenkov O.F. Perspektivnye tekhnologii razrabotki i soprovozhdeniya aviacionnyh trenazherov (AT) // Trenazhernye tekhnologii i obuchenie: novye podhody i zadachi: sb. st. Mezhdunar. konf. - M. : CAGI. 2003. pp. 40-43.
19. Starichenko B.E. Pedagogicheskij podhod k ocenke rezul'tativnosti ispol'zovaniya IKT v reshenii obrazovatel'nyh zadach // Pedagogicheskoe obrazovanie v Rossii. 2018. I.8. pp. 153-162 URL: https://cyberleninka.ru/article/n/pedagogicheskiy-podhod-k-otsenke-rezultativnosti-ispolzovaniya-ikt-v-reshenii-obrazovatelnyh-zadach (data obrashcheniya: 07.07.2022).
20. Stolbova I.D., Nosov K.G., Tarasova L.S. K voprosu o gotovnosti prepodavatel'skih kadrov k cifrovomu obucheniyu // Geometriya i grafika. - 2022. V.10. I.1. pp. 24-35. DOI: https://doi.org/10.12737/2308-4898-2022-10-1-24-35.
21. Trashkova A.V. Vicentij A.V. Vybor sposoba realizacii trenazhyora-simulyatora dlya sistemy trekhmernogo modelirovaniya otkrytyh gornyh rabot // Trudy Kol'skogo nauchnogo centra RAN. 2020. I.8-11. URL: https://cyberleninka.ru/article/n/vybor-sposoba-realizatsii-trenazhera-simulyatora-dlya-sistemy-trehmernogo-modelirovaniya-otkrytyh-gornyh-rabot.
22. Truhin A.V. Analiz sushchestvuyushchih v RF trenazhyorno-obuchayushchih sistem // Otkrytoe i distancionnoe obrazovanie. - Tomsk. 2008. V.29. I.1. pp. 32-39.
23. Turutina T.F. Tret'yakov D.V. Primenenie informacionnyh tekhnologij v metodike proverki graficheskoj gramotnosti budushchih specialistov // Geometriya i grafika. 2020. V.8. I.1. pp. 45-56. DOI: https://doi.org/10.12737/2308-4898-2020-45-56.
24. Folomkin A. I., CHupin S.A., Trubeckaya O.V., Sharok V.V. Razrabotka programmy-trenazhera na baze nejronnyh setevyh tekhnologij dlya razvitiya prostranstvennogo myshleniya studentov // Perspektivy nauki i obrazovaniya. 2022. V.57. I.3. pp. 582-602. doi:https://doi.org/10.32744/pse.2022.3.34
25. Ahadi A., Lister R., Haapala H., Vihavainen A. Exploring machine learning methods to automatically identify students in need of assistance. // ICER 2015 - Proceedings of the 2015 ACM Conference on International Computing Education Research. 2015. pp. 121 - 130. DOI:https://doi.org/10.1145/2787622.2787717
26. Ahadi A., Lister R., Vihavainen A. On the number of attempts students made on some online programming exercises during semester and their subsequent performance on final exam questions. // Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE. 2016. V.11, pp. 218 - 223. DOI:https://doi.org/10.1145/2899415.2899452
27. Bai Shurui, Hew Khe Foon, Huang Biyun. Does gamification improve student learning outcome? Evidence from a meta-analysis and synthesis of qualitative data in educational contexts. Educational Research Review. 2020. V.30. DOI:https://doi.org/10.1016/j.edurev.2020.100322
28. Bovermann K., Weidlich J., Bastiaens T. Online learning readiness and attitudes towards gaming in gamified online learning - a mixed methods case study. // International Journal of Educational Technology in Higher Education. 2018. V.15. I11. DOI:https://doi.org/10.1186/s41239-018-0107-0
29. Denny P., McDonald F., Empson R., Kelly P., Petersen A. Empirical support for a causal relationship between gamification and learning outcomes. // Conference on Human Factors in Computing Systems - Proceedings. 2018. DOI:https://doi.org/10.1145/3173574.3173885
30. Dhandabani Lakshmi, Sukumaran Rajeev. Use of ICT in engineering education: A survey report. // 2014 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC. 2014. pp. 343 - 355. DOI:https://doi.org/10.1109/ICCIC.2014.7238362
31. Fernandez-Reyes K., Clarke D., Hornbach J. The impact of opt-in gamification on students' grades in a software design course // 21st ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, MODELS-Companion 2018. 2018. pp. 90 - 97. DOI:https://doi.org/10.1145/3270112.3270118
32. Fortin C., Ignatiev S.A., Voronina M.V. Wolfram mathematica as applied to the interactive visualisation of descriptive geometry problems // Global Journal of Engineering Education. 2021. V.1. I.21. pp.37 - 42.
33. İbili Emin, Çat Mevlüt, Resnyansky Dmitry, Şahin Sami, Billinghurst M. An assessment of geometry teaching supported with augmented reality teaching materials to enhance students’ 3D geometry thinking skills // International Journal of Mathematical Education in Science and Technology. 2020. V.51. I.2. pp. 224 - 246. DOI:https://doi.org/10.1080/0020739X.2019.1583382
34. Lin Hao-Chiang Koong, Chen Mei-Chi, Chang Chih-Kai. Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system // Interactive Learning Environments. 2015. V.23. I.6. pp. 799 - 810, DOI:https://doi.org/10.1080/10494820.2013.817435
35. Parras-Burgos D., Melgarejo-Torralba M., Cañavate F. J. F., Fernández-Pacheco D. G. Graphic Interpretation of Surfaces with the Support of Augmented Reality as a Training Complement in Engineering Studies.// Lecture Notes in Mechanical Engineering. 2022. pp. 318 - 326. DOI:https://doi.org/10.1007/978-3-030-92426-3_37
36. Pivec M., Dziabenko O. Game-based learning in universities and lifelong learning: "UniGame: Social skills and knowledge training" game concept 1. // Journal of Universal Computer Science. 2004. V.10. I.1. pp. 14 - 26.
37. Polhmann T., Parras-Burgos D., Cavas-Martínez F., Cañavate F.J.F., Nieto J., Fernández-Pacheco D.G. Augmented Reality and Mobile Devices as Tools to Enhance Spatial Vision in Graphic Representations // Lecture Notes in Mechanical Engineering. 2020. pp. 420 - 427. DOI:https://doi.org/10.1007/978-3-030-41200-5_46
38. Pushmina S.A., Frolova M.A., Yakhina K.A. Digital e-learning socialization among engineering students.// Current problems of socio-humanities and intercultural communication: language, culture, education and economy. Materials of the Third international scientific-practical conference. St. Petersburg State University of Civil Aviation. 2022. pp. 267-274.
39. Sánchez Albert, Redondo Ernest, Fonseca David, Navarro Isidro. Academic performance assessment using Augmented Reality in engineering degree course. // Proceedings - Frontiers in Education Conference, FIE. 2014. pp. 1-7, DOI:https://doi.org/10.1109/FIE.2014.7044238
40. Soboleva E. V., Sokolova A. N., Votintseva M. L. A model of cognitive activity in the Quandary text labyrinth digital environment // Perspektivy Nauki i Obrazovania. 2018. V.35, I. 5. pp. 221 - 230.
41. Uribe Franz Calderón. Increased reality applied to the teaching of the descriptive geometry // AUS. 2015. V.18. I. 004.
42. Zaric N. Personalization of gamification in (programming) e-learning environments.// CEUR Workshop Proceedings. 2018.