ALL-RUSSIAN SCIENTIFIC AND METHODOLOGICAL CONFERENCE «PROBLEMS OF ENGINEERING GEOMETRY» AND THE SEMINAR «GEOMETRY AND GRAPHICS» 2021
Abstract and keywords
Abstract (English):
The article is devoted to the annual All-Russian scientific and methodological conference "Problems of Engineering Geometry" and the annual All-Russian scientific and methodological seminar "Geometry and Graphics" in 2021. Statistical information about the conference and seminar is provided: the number of participants, universities, the number of cities and countries in which universities are located -participants. Using the expression proposed earlier, the activity of participation of the departments of graphic disciplines in the conference "Problems of Engineering Geometry" and the seminar "Geometry and Graphics", held in 2021, was determined. The comparison of the number of participants and reports of the conference and seminar in 2021 with the number of participants and reports is given and analyzed International Internet conferences "Quality of graphic training" at the Perm National Research Polytechnic University. The results of the All-Russian Seminars "Geometry and Graphics" and the All-Russian Conferences "Problems of Engineering Geometry" of the last two years are compared with each other. In order to compare conferences and seminars quantitatively, not qualitatively, a relationship has been proposed. The content of the reports of the participants of the conference and the seminar is briefly considered. Conclusions are drawn: 1) in 2021, in terms of the success of the seminar "Geometry and Graphics" and the conference "Problems of Engineering Geometry", we managed to move forward - the success rate increased; 2) judging by the number of reports, scientific work on the profile of the department is carried out in a small number of departments. This is due to shortcomings in the staffing of departments of graphic disciplines by teachers. One of them is a lack of understanding that the winners or participants of All-Russian and regional Olympiads who have undergone appropriate training should work as teachers.

Keywords:
geometry, graphics, scientific and methodological conference, seminar, All-Russian, participants, university
References

1. Antonova I.V. Matematicheskoe opisanie vrascheniya tochki vokrug ellipticheskoy osi v nekotoryh chastnyh sluchayah [Tekst] / I.V. Antonova, I.A. Beglov, E.V. Solomonova // Geometriya i grafika. - 2019. - T. 7. - № 3. - S. 36-50. - DOI:https://doi.org/10.12737/article_5dce66dd9fb966.59423840.

2. Antonova I.V. Matematicheskoe opisanie chastnogo sluchaya kvazivrascheniya fokusa ellipsa vokrug ellipticheskoy osi [Tekst] / I.V. Antonova, E.V. Solomonova, N.S. Kadykova // Geometriya i grafika. - 2021. - T. 9. - № 1. - S. 38-44. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-38-44.

3. Boyashova E. P. Osobennosti distancionnogo obucheniya geometro-graficheskim disciplinam s ispol'zovaniem metodov konstruktivnogo geometricheskogo modelirovaniya [Tekst] / E.P. Boyashova // Geometriya i grafika. - 2021. - T. 9. - № 3. - S. 46-56. -DOI:https://doi.org/10.12737/2308-4898-2021-9-3-46-56.

4. Vasil'eva V.N. Zolotoe sechenie i zolotye pryamougol'niki pri postroenii ikosaedra, dodekaedra i tel arhimeda, osnovannyh na nih [Tekst] / V.N. Vasil'eva // Geometriya i grafika. - 2019. - T. 7. - № 2. - S. 47-55 - DOI:https://doi.org/10.12737/article_5d2c1ceb9f91b1.21353054.

5. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. - 2020. - T. 8. - №. 2. - S. 3-32. - DOI:https://doi.org/10.12737/2308-4898-2020-3-32.

6. Voloshinov D.V. Vizual'no-graficheskoe proektirovanie edinoy konstruktivnoy modeli dlya resheniya analogov zadachi Apolloniya s uchetom mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. - 2018. - T. 6. - № 2. - S. 23-46. - DOI: 10.12737/ article_5b559c70becf44.21848537.

7. Voloshinov D.V. Simpleks // Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM. Nomer svidetel'stva RU 2019619710. Patentnoe vedomstvo: Rossiya. God publikacii 2019. Zayavka № 2019618404 ot 09.07.2019.

8. Vyshnepol'skiy V.I. Vserossiyskaya nauchno-metodicheskaya konferenciya «Problemy inzhenernoy geometrii» 2020 g. [Tekst] / V.I. Vyshnepol'skiy, T.A. Vereschagina, A.V. Efremov, N.S. Kadykova, V.V. Rustamyan // Zhurnal estestvennonauchnyh issledovaniy. - 2021. - T. 6. - № 2. - S. 2-14.

9. Vyshnepol'skiy V.I. Vserossiyskiy nauchno-metodicheskiy seminar «Geometriya i grafika» 2020 g. [Tekst] / V.I. Vyshnepol'skiy // Zhurnal estestvennonauchnyh issledovaniy. - 2020. - T. 5. - № 4. - S. 5-10.

10. Vyshnepol'skiy V.I. Vserossiyskiy studencheskiy konkurs «Innovacionnye razrabotki» [Tekst] / V.I. Vyshnepol'skiy, N.S. Kadykova, N.I. Prokopov // Geometriya i grafika. - 2016. - T. 4. - № 4. - S. 69-86. - DOI:https://doi.org/10.12737/22845.

11. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 1 [Tekst] / V.I. Vyshnepol'skiy, N.A. Sal'kov, E.V. Zavarihina // Geometriya i grafika. - 2017. - T. 5. - № 3. - S. 21-35. - DOI:https://doi.org/10.12737/article_59bfa3beb72932.73328568.

12. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 2: geometricheskie mesta tochek, ravnoudalennyh ot tochki i konicheskoy poverhnosti [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, O.L. Dallakyan // Geometriya i grafika. - 2017. - T. 5. - № 4. - S. 15-23. - DOI: 10.12737/ article_5a17f9503d6f40.18070994.

13. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 3 [Tekst] / V.I. Vyshnepol'skiy, K.A. Kirshanov, K.T. Egiazaryan // Geometriya i grafika. - 2018. - T. 6. - № 4. - S. 3-19. - DOI:https://doi.org/10.12737/article_5c21f207bfd6e4.78537377.

14. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. chast' 4: geometricheskie mesta tochek, ravnoudalennyh ot dvuh sfer [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, D.S. Peh // Geometriya i grafika. - 2021. - T. 9. - № 3. - S. 12-29. -DOI:https://doi.org/10.12737/2308-4898-2021-9-3-12-29.

15. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. chast' 5: geometricheskie mesta tochek, ravnoudalennyh ot sfery i ploskosti [Tekst] / V.I. Vyshnepol'skiy, E.V. Zavarihina, K.T. Egiazaryan // Geometriya i grafika. - 2021. - T. 9. - № 4. - S. 22-34. -DOI:https://doi.org/10.12737/2308-4898-2022-9-4-22-34.

16. Egiazaryan K.T. Issledovanie geometricheskih mest tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur [Tekst] / K.T. Egiazaryan, V.I. Vyshnepol'skiy // Sbornik materialov 31-y Vserossiyskoy nauchno-prakticheskoy konferencii po graficheskim informacionnym tehnologiyam i sistemam. - Nizhniy Novgorod. - 2021. - C. 118-123. - DOI:https://doi.org/10.46960/43791586_2021_118.

17. Efremov A.V. «Pravil'nye» mnogopsevdogranniki, obrazovannye otsekami giperbolicheskih paraboloidov. [Tekst] / A.V. Efremov // Zhurnal tehnicheskih issledovaniy. - 2020. - T. 6. № 2. - S. 21-28.

18. Efremov A.V. Prostranstvennye geometricheskie yacheyki - kvazimnogogranniki [Tekst] / A.V. Efremov, T.A. Vereschagina, N.S. Kadykova, V.V. Rustamyan // Geometriya i grafika. - 2021. - T. 9. - № 3. - S. 30-38. -DOI:https://doi.org/10.12737/2308-4898-2021-9-3-30-38.

19. Zhiharev L.A. Obzor geometricheskih sposobov povysheniya udel'noy prochnosti konstrukciy: topologicheskaya optimizaciya i fraktal'nye struktury [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2021. - T. 9. - № 4. - S. 46-62. - DOI:https://doi.org/10.12737/2308-4898-2022-9-4-46-62.

20. Zhiharev L.A. Oblachnaya optimizaciya topologii [Tekst] / L.A. Zhiharev // Zhurnal tehnicheskih issledovaniy. - 2020. - T. 6. - № 2. - S. 15-20.

21. Zhiharev L.A. Obobschenie na trehmernoe prostranstvo fraktalov Pifagora i Koha. Ch. 1 [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2015. - T. 3. - № 3. - S. 24-37. - DOI:https://doi.org/10.12737/14417.

22. Zhiharev L.A. Fraktaly v trehmernom prostranstve. I-fraktaly [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2017. - T. 5. - № 3. - S. 51-66. - DOI:https://doi.org/10.12737/article_59bfa55ec01b38.55497926.

23. Zhiharev L.A. Fraktal'nye grafiki effektivnosti optimizacii topologii v reshenii problemy zavisimosti prochnosti ot setki [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2020. - T. 8. - № 3. - S. 25-35. - DOI:https://doi.org/10.12737/2308-4898-2020-25-35.

24. Zhiharev L.A. Fraktal'nye razmernosti [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2018. - T. 6. - № 3. - S. 33-48. - DOI:https://doi.org/10.12737/article_5bc45918192362.77856682.

25. Ivaschenko A.V. Obschiy analiz formy linii peresecheniya dvuh odnotipnyh poverhnostey vtorogo poryadka [Tekst] / A.V. Ivaschenko, D.A. Vavanov // Geometriya i grafika. - 2020. - T. 8. - №. 4. - S. 24-34. - DOI:https://doi.org/10.12737/2308-4898-2021-8-4-24-34.

26. Ignat'ev S. A. Funkcional'nye vozmozhnosti sredy Wolfram Mathematica dlya vizualizacii krivyh liniy i poverhnostey [Tekst] / S.A. Ignat'ev, A.I. Folomkin, E.H. Muratbakeev // Geometriya i grafika. - 2021. - T. 9 - № 1. - S. 29-38. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-29-38.

27. Korotkiy V.A. Approksimaciya fizicheskogo splayna s bol'shimi progibami [Tekst] / V.A. Korotkiy, I.G. Vitovtov // Geometriya i grafika. - 2021. - T. 9. - № 1. - S. 3-19. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-3-19.

28. Korotkiy V.A. Konstruirovanie G2-gladkoy sostavnoy krivoy na osnove kubicheskih segmentov Bez'e [Tekst] / V.A. Korotkiy // Geometriya i grafika. -- 2021. -- T. 9. -- № 2. -- S. 12-28. -- DOI:https://doi.org/10.12737/2308-4898-2021-9-2-12-28.

29. Korotkiy V.A. Kubicheskie krivye v inzhenernoy geometrii [Tekst]/ V.A. Korotkiy // Geometriya i grafika. - 2020. - T. 8. - № 3. - S. 3-24. - DOI:https://doi.org/10.12737/2308-4898-2020-3-24.

30. Mezhdunarodnaya internet-konferenciya «Kachestvo graficheskoy podgotovki: Problemy, tradicii, innovacii», Perm', 2019. - URL: http://dgng.pstu.ru/conf2019/.

31. Mezhdunarodnaya internet-konferenciya «Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: problemy, tradicii i innovacii», Perm', 2017. - URL: http://dgng.pstu.ru/conf2017/.

32. Mezhdunarodnaya internet-konferenciya «Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: problemy, tradicii i innovacii», Perm', 2016. - URL: http://dgng.pstu.ru/conf2016/.

33. Mezhdunarodnaya internet-konferenciya «Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: problemy, tradicii i innovacii», Perm', 2015. - URL: http://dgng.pstu.ru/conf2015/.

34. Mezhdunarodnaya internet-konferenciya «Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: problemy, tradicii i innovacii», Perm', 2014. - URL: http://dgng.pstu.ru/conf2014/.

35. Mezhdunarodnaya internet-konferenciya «Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: problemy, tradicii i innovacii», Perm', 2012. - URL: http://dgng.pstu.ru/conf2012/.

36. Mishukovskaya Yu.I. Razvitie tvorcheskogo potenciala studentov v ramkah olimpiady po inzhenernoy i komp'yuternoy grafike [Tekst] / Yu.I. Mishukovskaya, T.V. Usataya, L.V. Deryabina // Geometriya i grafika. - 2020. - T. 8. - № 1. - S. 66-73. - DOI:https://doi.org/10.12737/2308-4898-2020-65-72.

37. Nazarova O.N. Sovremennye problemy prepodavaniya kursa «Prikladnaya geometriya i inzhenernaya grafika» dlya ekspluatacionnyh napravleniy aviacionnogo vuza [Tekst] / O.N. Nazarova // Geometriya i grafika. - 2020. - T. 8. - № 2. - S. 58-65. - DOIhttps://doi.org/10.12737/2308-4898-2020-58-65.

38. Sal'kov N.A. Geometricheskaya sostavlyayuschaya tehnicheskih innovaciy [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2018. - T. 6. - № 2. - S. 85-93. - DOI: 10.12737/ article_5b55a5163fa053.07622109.

39. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 1 [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2018. - T. 6. - № 4. - S. 20-31. - DOI:https://doi.org/10.12737/article_5c21f4a06dbb74.56415078.

40. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 2 [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2019. - T. 7. - № 1. - S. 14-27. - DOI:https://doi.org/10.12737/article_5c9201eb1c5f06.47425839.

41. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 3 [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2019. - T. 7. - № 2. - S. 13-27. - DOI:https://doi.org/10.12737/article_5d2c170ab37810.30821713.

42. Sal'kov N.A. O ezhegodnoy internet-konferencii v Permi [Tekst] /N.A. Sal'kov // Zhurnal estestvennonauchnyh issledovaniy. - 2017. - T. 2. - № 2. - S. 1-9.

43. Sal'kov N.A. Otrazhenie razvitiya inzhenernoy geometrii v zhurnale «Geometriya i grafika» [Tekst] / N.A. Sal'kov, N.S. Kadykova // Geometriya i grafika. - 2020. - T. 8. - № 2. - S. 82-100. - DOI: 10.12737/ 2308-4898-2020-82-100.

44. Sal'kov N.A. Fenomen prisutstviya nachertatel'noy geometrii v drugih uchebnyh disciplinah [Tekst] / N.A. Sal'kov, N.S. Kadykova // Geometriya i grafika. - 2020. - T. 8. - № 4. - S. 61-73. - DOI: 10.12737/ 2308-4898-2021-8-4-61-73.

45. Vyshnepolsky V.I., Efremov A.V., Zavarihina E.V. Modeling and study of properties of surfaces equidistant to a sphere and a plane. Journal of Physics: Conference Series XV International Scientific and Technical Conference: Applied Mechanics and Systems Dynamics (AMSD 2021) //J.Phys.: Conf. Ser. 2182 012012.

46. Vyshnepolsky V.I., Kadykova N.S., Peh D.S. Geometric modeling and study of properties of surfaces equidistant to two spheres. Journal of Physics: Conference Series XV International Scientific and Technical Conference: Applied Mechanics and Systems Dynamics (AMSD 2021) //J.Phys.: Conf. Ser. 2182 012013.

47. Zhikharev L.A. A Sierpiński triangle geometric algorithm for generating stronger structures // Journal of Physics: Conference Series. IOP Publishing. 2021, V. 1901, I. 1, pp. 12-66.

48. Zhikharev L.A. A Sierpiński 3D-Fractals in Construction. An Alternative to Topological Optimization? // Proceedings of the 5th International Conference on Construction, Architecture and Technosphere Safety. 2022, V. 168, pp 273-284.

Login or Create
* Forgot password?